
INCA: a mechanism for traffic identification and
chaining in the data plane

Guilherme Matos
Department of Computer Science, UFSCar

Sorocaba, Brazil
guilherme.matos@estudante.ufscar.br

Luis Miguel Contreras
Telefonica

Madri, Spain
luismiguel.contrerasmurillo@telefonica.com

Leandro C. de Almeida
Department of Computer Science, UFSCar

Sorocaba, Brazil
leandro.almeida@estudante.ufscar.br

Fábio Luciano Verdi
Department of Computer Science, UFSCar

Sorocaba, Brazil
verdi@ufscar.br

Abstract—Inside the 5GC (5G Core) a myriad of (virtual)
functions may be deployed so that different treatment can be
given for traffic coming in and out to/from the RAN (Radio
Access Network). One of these key functions is Service Function
Chaining (SFC) supported by SRv6 state-of-the-art protocol. In
this paper, we present an SFC P4-based solution for traffic identi-
fication and chaining using SRv6. We call this function INCA (In-
Network Classification and chAining) which is deployed entirely
in the data plane using a Netronome Agilo SmartNIC. The INCA
is deployed just before the UPF (User Plane Function) inside the
5GC and is capable of observing the traffic coming from and
going to the RAN so that it classifies and creates the proper
sequence of services to be followed by every specific flow. Our
results show that INCA performs the task of packet classification
and chaining perfectly with a minimal FCT (Flow Completion
Time) impact when compared to the same environment without
it.

Index Terms—5G, Service Function Chaining, P4, SRv6

I. INTRODUCTION

5G was designed with very important structural changes
already in place adding the most up-to-date state-of-the-art
concepts such as network slicing, SBA (Service-Based Archi-
tecture) and also SDN (Software Defined Network). The latter,
known as CUPS (Control and User Plane Separation) within
the 5G architecture, allows for the separation of the control and
user plane which is a key concept since the origin of OpenFlow
in 2008. Such a set of technologies and paradigms make it
easier to instantiate network functions at the user plane, such
as firewalls, cache servers, DPI (Deep Packet Inspection) and
others, in order to provide value-added services to the users.

Aligned with the technologies mentioned above, currently
we also have witnessed a tendency of adopting in-network
solutions leveraging the programmable hardware that has
emerged in recent years as well as the usage of network pro-
gramming languages that enable the creation of new protocols
and behaviours inside the network equipment.

Taking into account that we can use network software
technologies such as SDN and NFV (Network Functions

Virtualization) to create solutions with a high level of pro-
grammability, flexibility and modularity, we designed and
implemented a solution that uses the SRv6 protocol [1] to
solve the lack of a mechanism capable of chaining service
functions within the 5GC entirely in the data plane.

INCA (In-Network Classification and chAining) is a P4-
based solution capable of performing traffic identification
and building an SRv6 header containing an SRH (Segment
Routing Header). This in turn contains a list of IPv6 addresses
(called segments) representing the functions that are being
chained together. To perform this identification, INCA is able
to analyze several fields of the protocol stack, such as IPv6
headers (inner/outer), TEID (Tunel Endpoint ID), QoS ID,
among others.

In a previous work [2], a proof of concept was accom-
plished. Using a SmartNIC P4-capable Netronome Agilio CX
2x10Gbe, we carried out the implementation of INCA in a
emulated 5G environment, where INCA was able to perform
the chaining of functions. Now, in this work, we perform the
performance evaluation taking into account the FCT (Flow
Completion Time). We performed several tests by sending
diferente traffic flows to two different environments, one with
and the other without INCA so that we could compare the
completion time of each flow for each environment. Our tests
show that the use of INCA makes it possible to chain functions
efficiently. As for performance, with the use of INCA there
was a maximum increase in the FCT of only 1%, which shows
that its use has a minimal impact on the 5G architecture.

We organized the remainder of this article as follows. In
Section II we present some important concepts for the rest of
this work. In Section III, we present some related works found
in the literature. In Section IV, we present how our proposal
was designed and implemented. In Section V, we show the
deployment and evaluation. Finally, in Section VI, we present
the final considerations.978-1-6654-4035-6/21/$31.00 ©2021 IEEE

II. FUNDAMENTAL CONCEPTS

This sections presents the fundamental concepts about 5GC
and its infrastructure, SFC (Service function Chaining) and
SRv6.

A. 5G core and infrastructure

Fig. 1: 5G infrastructure.

Figure 1 shows the 5G components with the blue boxes be-
ing the control plane functions and the red boxes the user plane
functions. Control plane is responsible for signaling messages
and management related to access, mobility, session, policy
and other functions. The user plane is where the user data goes
through and contains the UE (User equipment), RAN and UPF
(User Plane Function). UPF acts as an interconnection point
between the mobile infrastructure and the Data Network (DN)
and is responsible for routing and forwarding packets between
them. This logical network between UE and DN, providing
PDU connectivity service, is called PDU Session.

There is a specific protocol stack in the 5GC. Every time
a user packet arrives at the RAN, new IPv6, UDP and GTP
(GPRS Tunneling Protocol) headers are created, in that order.
All these headers will only exist between RAN and UPF. IPv6
and UDP are called IPv6 Outer and UDP Outer, respectivelly.
The UDP Outer header has the port 2152 as destination, and
works as an indicator that the data is encapsulated via GTP-U
(GTP User Plane Tunneling). The GTP is the most common
used protocol for 5G mobile networks and is adopted for data
transfers, session management and QoS (Quality of Service).
this protocol can be materialized into two different forms:
GTP-U for the user plane and GTP-C (GTP Control) for
the control plane. A new extension of this header was also
specified called PDU Session User Plane Protocol [3], which
carries information about QoS and QFI (QoS Flow Identifier).
UPF and RAN are the components responsible for creating and
dropping the protocol stack. In the uplink, the RAN creates the
headers and UPF removes all these additional headers before
sending the original packet to the DN. The same happens on
the downlink: UPF creates additional headers and RAN drops
before sending the original packet to the UE.

5GC offers the possibility to deploy functions on the user
plane, but we still need a mechanism to chain service functions
within this architecture [4].

B. SRv6 - Segment Routing over IPV6

SRv6 is the IPv6 data-plane instantiation of Segment Rout-
ing [1]. As we can see in Figure 2, it is an extension of
IPv6 header that is created with a segment list (a list of
IPv6 addresses, called SIDs - Segment IDentification) and
a pointer (SL - Segment Left) to identify which segment is
active. Every time that the packet passes through a segment
endpoint (SR-capable nodes whose address is in the IPv6
destination address) the pointer decreases, and the new SID
of the segment list is copied to the destination address. If
the packet passes through a non SRv6-aware device, the
forwarding is done normally with the destination address. This
way, SRv6 integrates both the application and the underlying
transport layer into a single protocol, allowing operators to
optimize the network in a simplified manner and removing
forwarding state from the network.

Fig. 2: IPv6 + SRv6 Header.

There are two encapsulation modes using SRv6: encap and
inline. The first encapsulates the corresponding packets in a
new external IPv6 header containing the SRH. The second
mode extends the existing IPv6 and just creates the SRH
right after the original packet header. SRv6 is available in the
mainstream Linux kernel since version 4.10, but the option
to de-encapsulate headers created in inline mode has not yet
been implemented [5].

C. SFC - Service Function Chaining

SFC is a mechanism that allows various functions to be
connected to each other in a way that allows for better
utilization and integration with SDN. An example of SFC
usage is an ASP (Application Service Provider), where there
are three VFs (virtual functions) that can be used to provide
services to its users. In this case, there is the possibility
of having different traffic going through different functions,
making it difficult to carry out the chain of these functions.
With the use of SFC, we can dynamically implement and
interconnect these functions.

III. RELATED WORKS

The work [6] uses SFC to manage the slice life cycle
through the adoption of the ETSI NFV Management and
Orchestration (MANO) framework, with SRv6 being used to
achieve this goal. Unlike this work, we use SRv6 to achieve the
service function chain technique to forward the packet to other
network functions, which adds value to the service, leaving the
creation and management of slices under the responsibility of
the existing 5G system. In addition, we use the P4 language
to create a programmable device, which was not used in [6].

The work [7] uses P4 to build programmable switches that
are located between the backhaul (access network) and the
SGW-U (which in 4G networks acts similarly to UPF). These
switches are capable of offloading GTP functions, that is,
being able to carry out the entire process of encapsulating
and de-encapsulating packets in GTP tunnels, thus relieving
the VMs’ CPUs. Our work is different because it is focused
on building an SRv6 header extending IPv6, and with that,
enabling the service functions.

In [8], an architecture to both, manage SFC via OpenFlow
and use SR-I/OV (Single-Root Input/Output Virtualization)
in SDN environments to speed up packet processing, was
proposed. VLAN-based rules were used to control forwarding,
and that is why it is necessary to install a software client
in each service in the chain.. Furthermore, a communication
channel was built between the OpenvSwitch and the L2 switch
in the SR-I/OV NIC. In comparison, our work already uses a
SmartNIC with SR-I/OV enabled. However, instead of creating
the SFC management via OpenFlow, we do this via P4 code,
which is loaded inside the card. After the creation of the SRv6
header by INCA, each service in the chain needs to know and
know how to deal with this header so that the routing between
functions occurs correctly. And as this feature is already part of
the linux kernel, we avoid installing any client, thus facilitating
the deployment of SFC.

IV. INCA: DESIGN AND IMPLEMENTATION

According to key aspects of 5G, certain functions may or
may not be allocated to customers, and what determines this is
the type of traffic flows and other needs related to the requested
service. Our solution is intended to be deployed within the
5GC, so that it can be allocated on demand, that is, only if
there is a need to perform SFC. To do so, it needs to have
a certain level of autonomy in a way that the entire SRv6
creation, dropping and routing to functions do not depend on
or impact the underlying functions. Therefore, SRv6 header
is a key candidate for keeping the transparency respecting the
remaining TCP/IP stack.

A fundamental point is that SRv6 cannot be used as 5G user
plane transport protocol since other functions still depend on
the GTP, which is the most common protocol used from RAN
to UPF communication. As such, INCA is in charge of creating
and removing the SRv6 header before forwarding the original
GTP traffic to the UPF. The SRv6 is created, the segment list
is added and the traffic flow is forwarded to the VFs in a
totally independent and transparent way. By doing this before

the UPF, we enable SFC inside the 5GC without the need
to change the original transport protocol or other predefined
functionalities.

To support the aforementioned mechanism, we chose the
inline SRv6 mode, as it offers the advantage of using the IPv6
outer header, that already exists in the 5G core, thus avoiding
the creation of another IPv6 header. Although the inline mode
is more interesting within the 5GC by extending the SRH from
the existing IPv6 header, avoiding the creation of a new one,
this mode also imposes a challenge. As a natural choice, Linux
OS is used to host the VFs acting as both, the SRv6-capable
router and the host for the VF. By default, the last function
is always responsible for removing the SRH. However, the
current Linux Kernel supports only the encap mode, that is,
when the SRH is removed, the IPv6 is removed as well, which
would cause problems within the 5GC. We solved this problem
by encoding the inline mode in P4 and leaving it under the
responsibility of INCA, so that it is now possible to decap the
SRv6 header without changing the original IPv6 header.

INCA was totally implemented using the P4 language. We
added all the headers used in the 5G architecture and also
the SRv6. We configured the parser so that INCA accepts
packets in the 5G standard, with or without the SRv6 header.
Figure 3 shows the INCA processing flow, which indicates
the actions to be taken: add the SRH or drop the SRH. The
packet models that are supported can be seen in Figure 4, items
2 and 4, which are respectively the default 5GC protocol stack
and the default stack with the addition of the SRH. For sake
of simplicity, the ethernet headers do not appear in Figure 4.
However, it is the first header to be opened by INCA. After
the identification of the headers, if it is within the standards
mentioned above, the packet is accepted and then enters the
ingress processing step, where for each situation there is an
action:

Fig. 3: INCA processing flow.

• Case A - If the packet does not contain an SRH, a search
is performed in the tables configured by the control plane
to check if there are any rules that apply to this packet. If
it exists, the SRH is created and the packet is forwarded
to the first network function;

• Case B - If the packet contains an SRH with SL field
equals to zero it means that the packet has already gone
through all functions, and INCA drops the SRH (inline
mode) and forwards the packet to the UPF.

Figure 4 shows how our solution works. After the user
(UE) sends a packet (1) and this packet is encapsulated by
the RAN (2), the INCA receives it. This scenario fits into
Case A: an SRH is created and the packet is sent to the
first network function (3). This network function identifies the

Fig. 4: INCA working flow.

SRH, performs its operation (executes the VF), decrements
the SL field, updates the IPv6 destination based on the new
SID (4) and sends the packet to the next network function
(5). This sequence is then repeated, however, VF B:: is the
last in the sequence so the packet is sent back to INCA (6).
INCA observes that the SL field is equal to zero (Case B) and
that there are no more network functions to go through. So
INCA removes the SRH and forwards the packet to the UPF
(7) which forwards to the final destination (8). Note that the
packet forwarded to the UPF is identical to the packet received
by the RAN.

In Case A, several fields from the user transport, network
layer and from the 5GC can be used as correspondence by
the control plane to identify a traffic. The PDU Session User
Plane Protocol [3] was also implemented as one of these fields,
which is a new extension for the GTP created specifically for
the 5GC. INCA has already implemented all the necessary
mechanisms to read this protocol and even perform matching
using QoS ID, thus creating SFC based on this value. In this
way, INCA is able to perform SFC based on IPv6 addresses,
UDP or TCP ports, slice ID, QoS ID, or any combination of
these.

V. DEPLOYMENT AND EVALUATION

In this section, we present how we implemented and eval-
uated INCA. We used a P4-capable Netronome Agilio CX
SmartNIC with 2x10Gbps where INCA was deployed. We
also used Virtual Machines (VMs) with Linux OS for the 5G
environment and to host the VFs.

A. Deployment

Using SR-I/OV, the Netronome card is able to create VFs
logically isolated from PFs (physical functions) in order to
share the physical resources. Typically, VFs are assigned to
VMs (virtual machines). The access to VMs is done directly
via PCI, avoiding the kernel host. Our solution uses five
virtual interfaces (VF 1 - VF 5) shared from the two existing
physical interfaces.

Fig. 5: Testbed setup.

According to Figure 5, the following configuration was
defined: seven VMs, three of them are network functions
(NFV1 is an IDS - Intrusion Detection System, NFV2 is an
IPS - Intrusion Prevention System and NFV3 is a Firewall
- Packet Filter). One VM for the UE, which sends traffic
to the DN, and another VM for DN, which responds to UE
requests. Lastly, we have the native functions of 5GC: RAN
and UPF. These last two perform the encapsulation and de-
encapsulation of packets in GTP tunnels, and for this, we use

Fig. 6: Time distribution in relation to flow size.

a P4 code deployed in a BMv2 (Behavioral Model version 2)
virtual switch running on these two VMs.

The network functions were configured in order to exem-
plify several options for chaining from different scenarios.
Thus, two scenarios were set up. In the first one, the SFC
is formed by the network functions NFV1 and NFV2, which
perform their functions as IDS and IPS as well as SRH
processing. In the second scenario, the SFC is formed by
NFV2 and NFV3. The latter is a firewall that is configured to
block traffic coming from the UE. Using these two scenarios,
we can both send flows and dynamically change the network
functions so that a given traffic is allowed while other is
blocked by the firewall.

B. Evaluation

In a previous work [2], we showed how INCA works with
all its resources. In this work, our objective is to show the
tests related to INCA’s performance and evaluation.

Our tests are based on the evaluation of INCA’s impact on
the FCT in relation to the same environment without the use
of INCA. We configured INCA so that SRH encapsulation
(creation) and de-encapsulation (destroying) actions are done
in sequence. In this scenario, packets do not go through
network functions. Instead, the packet arrives at INCA where
the SRH is created in the ingress processing. Right after the
SRH creation process, it is destroyed and then the packet is
forwarded to the UPF.

To perform the evaluation, we use Iperf [9] to send TCP
flows of different sizes: 10MB, 50MB, 100MB, 150MB and
300MB. The experiments were done 30 times for each flow
size in each environment.

For this work, we took into account a reasonable number of
three SIDs. The rules and policies on what to do with traffic
flows can be configured by the control plane to build SRv6
header with one, two or three SIDs.

Our tests showed that the variation in the number SIDs
created has no influence on the FCT. So, we chose the environ-
ment where two SIDs are created to perform the comparison
with an environment without INCA.

Tables I and II show the summary of the tests performed
and Figure 6 shows the distribution and the comparison of the
FCT for each flow size, with and without INCA. On the X

TABLE I: Summary of tests without INCA

Flow Size Min Max Mean Median Std
10MB 57.6 66.4 61.37 61.3 1.77
50MB 295.5 310.7 302.92 302.65 4.82
100MB 578.8 622 601.9 602.55 11.07
150MB 862.9 942.7 903.46 903.4 17.71
300MB 1607 1829.5 1776.49 1784.85 49.03

TABLE II: Summary of tests with INCA

Flow Size Min Max Mean Median Std
10MB 57.9 65.5 61.88 62.15 1.8
50MB 290.1 315.5 305.73 305.65 5.9
100MB 575.9 623.9 607.19 609.5 12.81
150MB 878.7 940 910.37 912 15.17
300MB 1532.5 1890.5 1791.89 1800.5 70.27

axis, we have the size of the flows, and on the Y axis we
have the completion times for each test in seconds. The dots
in green refer to environment with INCA results and red the
environment without it.

Analyzing Tables I and II, we can see that the mean, median
and standard deviation of INCA were mostly higher when
compared to the same environment without INCA, which
indicates a higher FCT.

As for the amplitude of the results, that is, the difference
between the highest and lowest results of each flow, it is pos-
sible to see in Figure 6 that both environments had variations.
This demonstrates that the transmission rates did not remain
constant during the tests.

Figure 7 shows the FCT with and without INCA. We can
visualize the median, dispersion of results, interquartile range
and outliers. These graph show that in all cases the median
referring to INCA is higher than without INCA. Furthermore,
we can note the following patterns: the median of INCA is
always close to Q3 (top edge of rectangle) of the environment
without INCA and Q1 (botton edge of rectangle) of INCA
always starts close to the median of the environment without
INCA. This demonstrates that the interquartile ranges (that is,
the dispersion of results) of both tests are very close.

In Figure 8, the distribution of values related to the dif-
ference between the environment with and without INCA is
shown. In the X axis, we can see the distribution of the
difference and in the Y axis, the values are in percentage.

Fig. 7: FCT comparison.

In fact, looking at this figure, it is possible to observe that
there is a small increase between 0.77% and 1.01% in the
FCT when INCA is used.

Fig. 8: Percentual variation.

The results show that INCA is able to perform SFC within
the 5G architecture effectively. It was also possible to observe
that the creation of up to three SIDs does not change the
FCT. INCA has a increase of 1% in FCT when compared to
the scenario without it. We also noticed that there is a pattern,
where FCT values with and without INCA are overridden, so
that the results always remain within a pre-defined range where
it is possible to predict the behavior, which is an important
feature for SLA (Service Level Agreements).

VI. CONCLUSION

In this work, we presented the design, implementation and
evaluation of INCA, a solution developed in P4 and deployed
in a SmartNIC to enable SFC and traffic forwarding within
the 5GC.

Our tests show that INCA is able to perform packet iden-
tification, building and removing the SRH as well as perform
routing between network functions.

Performance tests show that INCA’s impact on FCT is min-
imal when compared to the same environment without INCA.
Furthermore, the use of SRv6 without changing the existing
GTP-U enables it for unrestricted use in 5G architectures.

Future works include the implementation of INCA using
real RAN and UPF functions, in addition to carrying out tests
and evaluation of the implementation of INCA in an edge
environment.

REFERENCES

[1] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture,” RFC 8402, Jul. 2018.
[Online]. Available: https://rfc-editor.org/rfc/rfc8402.txt

[2] G. Matos, F. L. Verdi, L. M. Contreras, and L. C. de Almeida, “When
srv6 meets 5g core: Implementation and deployment of a network service
chaining function in smartnics,” 2021 P4 Workshop, 2021.

[3] ETSI, “5G; NG-RAN; PDU session user plane protocol (3GPP TS 38.415
version 16.4.0 Release 16),” European Telecommunications Standards
Institute (ETSI), TECHNICAL SPECIFICATION (TS) TS 138 415, 04
2021, version 16.4.0.

[4] S. Homma, X. de Foy, and A. Galis, “Gateway Function for Network
Slicing,” Internet Engineering Task Force, Internet-Draft draft-homma-
nfvrg-slice-gateway-00, Jul. 2018, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-homma-nfvrg-slice-gateway-00

[5] D. Lebrun and O. Bonaventure, “Implementing ipv6 segment routing
in the linux kernel,” in Proceedings of the Applied Networking
Research Workshop, ser. ANRW ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 35–41. [Online]. Available:
https://doi.org/10.1145/3106328.3106329

[6] D. Borsatti, G. Davoli, W. Cerroni, and F. Callegati, “Service function
chaining leveraging segment routing for 5g network slicing,” in 2019 15th
International Conference on Network and Service Management (CNSM).
IEEE, 2019, pp. 1–6.

[7] C.-A. Shen, D.-Y. Lee, C.-A. Ku, M.-W. Lin, K.-C. Lu, and S.-Y. Tan, “A
programmable and fpga-accelerated gtp offloading engine for mobile edge
computing in 5g networks,” in IEEE INFOCOM 2019-IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
2019, pp. 1021–1022.

[8] H.-E. Tseng and S.-H. Shen, “A low latency service function chain with
sr-i/ov in software defined networks,” Wireless Networks, vol. 26, no. 6,
pp. 4459–4475, 2020.

[9] A. Tirumala, “Iperf: The tcp/udp bandwidth measurement tool,”
http://dast. nlanr. net/Projects/Iperf/, 1999.

