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ABSTRACT
Recently, several applications have been designed and imple-
mented to run entirely in the dataplane. However, most if not
all the applications assume that network traffic traverses the
same pipe, from ingress to egress inside the switch. While
this seems to be a natural assumption, it does not hold for
current programmable hardware that supports two to four
pipes and network traffic is spread among the different pipes.
As a consequence, several applications may not work prop-
erly in a multi-pipe architecture and need to be redesigned
to fit into such architectural constraint. In this paper, we call
the attention to this challenge and elaborate on an initial
solution for counting heavy hitters (HH) in a multi-pipe hard-
ware (MPHH). Our solution keeps the HH counter only in
the egress pipeline while temporarily caching the hashes at
the ingress pipeline. We then carry the hashes from ingress
to egress by using data packets so that the HH are counted
only in the egress pipeline. We present our design around
this issue, the challenges observed so far and some initial
results.
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1 INTRODUCTION
Several applications are now designed and implemented to
run entirely (or partially) inside a switch so that monitoring
and actuation can be performed at line-rate. These appli-
cations range from load balancers [7, 12, 23], congestion
control [11, 16], heavy hitters detection [1, 14, 17, 19], and
in-network caching [10, 15] to DDoS defense [13], fast re-
rerouting [2, 6] and machine learning aggregation [18, 22].

However, when such applications are deployed into a pro-
grammable switch they need to face the constraints found in
the hardware such as limited SRAM and TCAM, number of
stages, number of registers, and more. Also and of great im-
portance, programmable switches are designed to have more
than one pipe to increase the processing capacity. Typically,
current switches support two and four pipes and the number
of physical ports in each pipe depends on the number of total
physical ports in the switch. As an example, a 64-port switch
with 4 pipes will assign 16 ports per pipe [9].

The multi-parallel pipes architecture is beneficial for high
packet processing and to diminish race conditions when
accessing the hardware resources. In a multi-pipe device, ev-
erything is local to the pipe including the registers, counters,
and P4 tables. Typically, there is an instance of the same syn-
thesized P4 program running in each pipe having pipe-local
counters and registers [4]. A given register in one pipe is
not seen by any other pipe which is exactly what the sili-
con designers needs to keep the design simple enough for
supporting high throughput. However, this constraint may
become cumbersome for some applications running in the
switch.
Even information about single flows may be spread onto

multiple pipes. This may be due to failures, load balancing,
and traffic engineering [5, 21]. A given flow may start in one
pipe and during its life-cycle it may move to others. Packet
spraying [3, 8] and flowlets [20] have been used to load
balance while fast-rerouting has been adopted for failure
recovery. All of them are examples of scenarios where the
network traffic may change from one pipe to another and
affect dataplane monitoring applications running inside the
switches.
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In this paper, we elaborate around this multi-pipe con-
straint to design and implement a data structure that can
support arbitrary Heavy Hitter (HH) detection applications
on a multi-pipe hardware architecture. We call our data struc-
ture multi-pipe HH (MPHH). Our central idea is to choose
exactly one pipe where counters (or sketches) for a specific
flow will be stored. The HH sketch is then installed only at
the egress pipeline while keeping a small cache in the ingress
pipeline to temporarily store the incoming hashed packets.
When a data packet enters in the ingress pipeline and leaves
the switch through the pipe where the sketch is located, such
a data packet carries hashed keys from the ingress to the
egress, which in turn counts the packets in the sketch. The
HH sketch in the egress pipeline can be any existing HH
sketch.

2 MOTIVATION
Figure 1 depicts a simplified view regarding the spreading
of network traffic among the pipes and how this can affect
applications running in the switch.

Figure 1: Heavy hitter application running in each
pipe. In this case, no HH is detected.

The switch is running an HH detection application having
an instance of the P4 synthesized program installed in every
pipe. Now, suppose that flow f1 starts in pipe 1 and due to a
load balancing mechanism running on upstream switches in
the path of f1 (e.g. flowlet-based load balancing) or a failure
that triggered fast-rerouting, f1 arrives now in the switch
through pipe 2. The HH counter at pipe 1 will have part of
the packets counted while the remaining packets are counted
at pipe 2. Depending on the HH threshold defined, the flow
may not be counted as an HH or counted twice, once per
pipe. Imagine that the HH threshold is 50 packets. If f1 has 70
packets at all and flaps from pipe 1 to pipe 2 after counting
40 packets in pipe 1, then the HH will not be detected. If f1
has 150 packets and flaps after have counted 50 packets in
pipe 1, then the HH is counted twice.

3 MULTI-PIPE AWARE HEAVY HITTER
DETECTION

The main idea behind our solution is to add a cache, that
may be implemented using registers, in the ingress pipeline
and move the HH application to the egress pipeline. In the
egress, the application is running in only one pipe instead
of being spread among all the pipes. We can also partition
the data structures of the HH application among all egress
pipes to achieve more uniform memory utilization, however
for simplicity, we assume all data structures are in a single
egress pipe.
The cache is responsible for storing the hashes of the

packet identifiers that can be used to update the data struc-
tures in the egress pipe. The hash of a packet identifier is
stored into a cache when the output pipe of that packet is
different from the pipe where the HH is running. If the data
packet is instead forwarded to the pipe where the HH appli-
cation is running, then no cache is needed. In this case, the
data packet can carry the hashes (if any) as metadata from
the cache to the HH counter in the egress pipeline.

Figure 2 shows an example of how our mechanism works
in a 2-pipe switch. In the figure, the HH application is run-
ning in pipe 1. There are two cases to be considered:

• Packet 𝑝1 arrives in pipe 0 and is forwarded to a port
belonging to pipe 0 (Fig. 2a). In this case, it is neces-
sary to add the hash into the cache at the ingress. A
hash function is applied using a pre-configured "flow
class" identifier, e.g., the source IP address identifier or
any other field combination. The data packet is then
forwarded to its designated output port.

• Packet 𝑝2 arrives in pipe 0 and is forwarded to a port
belonging to pipe 1 (Fig. 2b). In this case, it is not neces-
sary to cache the hash in a queue at the ingress because
the packet will be counted by the HH application in
pipe 1. In this case, our mechanism carries the hashes
stored in the cache (i.e., the hash of p1) to the egress
adding such hashes as metadata in the data packet as
a way to drain the cache. The data structure in the
egress pipeline updates both entries for 𝑝1 and 𝑝2. The
data packet (𝑝2) is then forwarded to the output port.

In the figure, for sake of demonstration, only one hash is
being carried from ingress to egress. However, more hashes
can be stored in the cache and moved as metadata depending
on how many hashes are needed by the HH application as
well as the switch capacity of updating multiple entries of a
register (or updating multiple registers) in parallel.

The size and the quantity of queue data structures used in
the ingress pipeline need also to be tuned with care. Queues
are implemented as registers and such resource is scarce in
programmable hardware. At the same time, the size of the
queues affects the number of hashes that can be queued.
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(a) Caching the hash.

(b) No caching. Carrying the hash from the queue to egress.

Figure 2: HH detection in a 2-pipe switch.

We carried out some preliminary experiments on a simu-
lator which mimics a simplified programmable switch with 2
and 4 pipes. For instance, we simplify the switch architecture
by assuming that at most 8 cached items can be moved to
the egress pipeline. We also assume multiple updates can be
performed on a register. We leave the problem of support-
ing multiple updates by partitioning the data structures into
multiple registers as future work. For our evaluations, we
adopted FCM [19] as the HH application. FCM is a three level
sketch which consists of three hierarchical levels of registers
that need to be updated for each single received packet.

We re-use the same parameters and traces from the FCM
paper. The size of the FCM registers data structures is 219
8-bit entries for level 1, 216 16-bit entries for level 2, and 213
32-bit entries for level 3. Considering that FCM uses 2 hash
functions, the memory requirements for the implementation
are 1.31MB of SRAM in each pipe, which means 2.62MB for a
2-pipes switch and 5.24MB for a 4-pipes switch. We consider
the task of detecting heavy hitters (classified with the source
IP address) and use the f1-score as a metric of the system
performance. F1-score is calculated as follows:

𝑓 1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑅 × 𝑅𝑅

𝑃𝑅 + 𝑅𝑅

where PR (Precision Rate) is the ratio of true instances re-
ported including non HH and RR (Recall Rate) is the ratio of
reported true instances.

We use the same data trace and the same hash function
(BOB hash) utilized by the FCM paper. There are around 500K
flows and 166 HHs in such a trace (with an HH threshold
of 10K packets). We also collected the average queues size
so that we can observe the total memory occupied by the
cache in the ingress pipelines. Since we run FCM only on one
egress pipe, the memory occupied by it is 1.31MB. We could
spread FCM over all egress pipes and utilize 327KB per pipe.
In both cases, this is a 4x reduction of memory utilization on
a 4-pipe switch.

Table 1 presents a summary of the results.

#pipes HH found Non HH found PR RR f1-score
2 166 4 0.9764 1 0,9880
4 166 5 0.9707 1 0,9851

Table 1: HH detection using FCM in a multi-pipe
switch.

The "standard" FCM achieves an f1-score of 99.4% while
our solution achieves 98.80% and 98.51% for 2 and 4 pipes,
respectively, which is a very small difference.

We also analyzed the the maximum size of the queues used
for caching. In our experiments, we choose to have 4 and 8
queues for 2 and 4 pipes, respectively. The results showed
that, on average, assuming an evenly distribution of the
traffic among the pipes, the maximum queue size is around
300 packets, respectively for 2 and 4 pipes. Considering a
32-bit hash, the memory usage is of 9.37KB (2 pipes) and
37.5KB (4 pipes), causing a very small impact on the memory
occupancy.

4 CONCLUSIONS
In this paper, we touched upon the problem of deploying a
standard-single pipe HH application (FCM) into a multi-pipe
switch with 1/4th of memory usage keeping very similar
accuracy in terms of f1-score. We also observed that the
cache mechanism requires very small queues, at the least for
the tested trace.
Future works include implementing MPHH on a Tofino

architecture to tackle any architectural constraints such as
limited number of updates per register. Moreover, we plan to
evaluate our MPHH using other traces as well as other data-
plane applications which are currently impacted by multi-
pipes architectures such as load balancing, DDoS attacks and
distributed machine learning training.
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