
Vol.:(0123456789)

Journal of Network and Systems Management
https://doi.org/10.1007/s10922-020-09556-7

1 3

BitMatrix: A Multipurpose Sketch for Monitoring
of Multi‑tenant Networks

Regis Francisco Teles Martins1 · Rodolfo da Silva Villaça2  ·
Fábio Luciano Verdi1 

Received: 6 January 2020 / Revised: 21 May 2020 / Accepted: 11 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Sketches are probabilistic data structures capable of summarizing and storing net-
work data (packets, bytes, and flows), with a certain degree of accuracy, that have
become widely popular for network measurement and monitoring. In this paper, we
propose a new multi-purpose sketch, called BitMatrix, which is capable of work-
ing in multi-tenant networks. Owing to its multi-dimensional architecture, BitMa-
trix can differentiate between bit markings and byte/packet counting from different
sources in a network. As a multi-purpose sketch, BitMatrix and its algorithms con-
tribute to the literature by providing information regarding the paths traversed by
each packet and are designed for use in multi-tenant networks. We also designed a
statistical model to adjust the measurements owing to the probabilistic behavior of
the sketches. Such a model is able to infer the standard error rate and approximate
the BitMatrix counters to the real value. The adjusted BitMatrix measurement has
a Mean Absolute Percentage Error of ± 6.14%. The BitMatrix sketch was imple-
mented using P4 language and a simulator was also developed, that allowed its scal-
ing using real traces from CAIDA in an NSF network topology.

Keywords  Network monitoring · Sketches · Multi-tenant networks · Programmable
networks

 *	 Rodolfo da Silva Villaça
	 rodolfo.villaca@ufes.br

	 Regis Francisco Teles Martins
	 regisftm@gmail.com

	 Fábio Luciano Verdi
	 verdi@ufscar.br

1	 Department of Computing (DCOMP‑So), Federal University of São Carlos (UFSCar),
Sorocaba, SP, Brazil

2	 Industrial Technology Department (DTI), Federal University of Espírito Santo (UFES), Vitoria,
ES, Brazil

http://orcid.org/0000-0002-8051-3978
https://orcid.org/0000-0002-5455-8910
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-020-09556-7&domain=pdf

	 Journal of Network and Systems Management

1 3

1  Introduction

Accurate network measurements are of paramount importance for monitoring, man-
agement, capacity planning, and traffic engineering purposes. In addition, cloud
computing has become very popular; thus, increasing the challenges in measuring
a complex network infrastructure that supports multiple services and applications.
Therefore, it is becoming increasingly urgent for an accurate and fine-grained meas-
urement system to operate efficiently when considering its use in a complex infra-
structure with multiple services and tenants[1].

Faced with the need for more effective ways to measure traffic that flows in a net-
work link between network devices, understand its behavior to support traffic engi-
neering decisions, a valuable contribution is made through the utilization of proba-
bilistic data structures (sketches). An accurate measurement of traffic on links and
between network devices can help network managers better distribute flows into the
links as a load balancing action and to find bottlenecks in the network devices that
may cause latency problems in the network. In addition, another interesting question
that can be answered as a result of network monitoring is “given a packet and net-
work topology (in the past), what was the path taken by this packet in the network?”

Sketches are probabilistic data structures used to store summarized information
about network traffic. The two primary advantages of using sketches are (i) a lower
memory usage in network devices (switch or router) when compared to traditional
network monitoring tools, and (ii) configurable parameters (the size and occupancy
of BitMatrix and the hashing function itself) that can be used to adjust the accuracy
of the measurements[2–5].

Traditional traffic measurements, such as Netflow[6] and sFlow[7], have been
used for reducing the amount of memory to store network packets for analysis.
However, such solutions suffer with the overhead when copying these packets to the
management interface, and it is occasionally also necessary to process such packets
inside the network devices for summarization and forwarding to the management or
control plane[8–10]. To avoid such an overhead, these tools usually apply sampling-
based techniques, which typically have low accuracy and other weaknesses, such
as: no support for data streaming algorithms to find the sources and destinations, or
for the distributed version of the top-k problem, i.e., finding the globally k-most fre-
quent flows, sources, or destinations in the network[11, 12].

There are also numerous measurement solutions for different applications in net-
work monitoring, including heavy hitter detection[5, 13, 14], traffic change detec-
tion[15, 16], a flow size distribution estimation[17, 18], global iceberg detection[19],
fine-grained delay measurements[20], an estimation of the flow-size distribution of
traffic streams[18, 21], and an identification of anomalies in the network[15, 16, 22].
Differing from traditional measurement tools based on sampling, the use of sketches
for traffic monitoring implies a trade-off between the amount of memory used to
store data and required accuracy of the measurements.

Sketches offer a measurement technique that is suitable for application with-
out sampling, processing every packet in the network, and achieving low memory
usage and processing[23] with adjustable accuracy according to the sketch design[5,

1 3

Journal of Network and Systems Management	

16, 23–26]. Fast packet-processing technologies can be used to implement these
sketches in the data plane, such as eBPF, XDP[27], and FPGA[28]. SmartNICs are
network interface cards that are capable of having their functionality modified dur-
ing runtime, thereby implementing different modes of operation. They can also be
used to speed-up packet processing and enable the use of sketches.

Considering this scenario, many sketch-based solutions have begun to emerge on
the market. In most cases, the sketches are used only for the marking of bits or bytes
in a register, with all processing being accomplished by moving a few bytes to the
management plane. In these cases, sketches have a lower overhead in the packet pro-
cessing pipeline of the network devices and lower memory usage when compared to
a traditional approach based on NetFlow and sFlow[29].

As an evolution of software defined networking (SDN), a Programming Protocol-
Independent Packet Processor (P4) was presented as a high-level programming lan-
guage for packet forwarding devices[30]. P4 allows the creation of several mecha-
nisms for traffic measurement[31, 32], which include the implementation of sketches
in programmable devices.

In this context, in this study, a new probabilistic structure called BitMatrix is
designed and implemented based on the well-known bitmap and counter-array
sketches, going further than the traditional monitoring process of counting packets
and bytes. BitMatrix was created to support the multi-tenant monitoring capability,
in addition to other features normally supported by this type of structure. To support
multi-tenancy, the existent sketch solutions must have multiple instances installed on
the network devices (at least one per tenant). These devices must also classify flows
or packets and select the correct sketch to conduct the marking. This task must be
achieved in each network device because multi-tenant scenarios are not intrinsic to
such sketches. BitMatrix solves the problem with a single sketch, by generating the
traffic classification according to the IP source (tenant) and separating such traffic by
marking the correct position. BitMatrix uses an array of bitmaps combined with a
storage method that enables the information to be segmented per tenant. In addition
to the general probabilistic measurement, BitMatrix enables detailed analyses on a
packet level in the network. In this study, we consider that each tenant has its own IP
address sub-network, and can be identified by its address.

To achieve fine-grained measurements using sketches, we designed a machine
learning (ML) model based on historical data to increase the accuracy of the meas-
urements based on sketches. This model is then used in a polynomial regression
algorithm to adjust the results and minimize the measurement errors caused by hash
collisions. If a network device has infinite memory space and a perfect hashing func-
tion, this model is not necessary. However, because it is only a theoretical and non-
practical situation, considering the same hashing function in all devices, the lower
the memory space used for sketch instantiating, the greater the collision probability
in the sketches and the lower the measurement accuracy. Under these real scenarios,
this model is used to increase the measurement accuracy in a restricted memory net-
work device.

BitMatrix was implemented in P4 language and deployed in a Mininet minimalist
topology to be tested and evaluated. The results of this evaluation were described in

	 Journal of Network and Systems Management

1 3

a short paper[33], and the implementation is open source.1 As the main difference
between this study and the previous one[33], we designed and implemented a simu-
lator to evaluate the BitMatrix with real traces from the Center for Applied Internet
Data Analysis (CAIDA) and extensively analyzed the usage of linear and polyno-
mial regression algorithms in this type of traffic. In summary, the contributions of
this study are as follows:

–	 We designed a new probabilistic structure called BitMatrix that is capable of col-
lecting the monitoring metrics in a multi-tenant infrastructure;

–	 We implemented BitMatrix using P4 language and made it available as open
source for the community;

–	 We evaluated BitMatrix using real traffic traces from CAIDA in a NSFNet net-
work;

–	 We designed a model to improve the measurements conducted using BitMatrix
and minimize errors from hash collisions.

The remainder of this paper is organized as follows: In Sect. 2, some related studies
are presented to highlight our contribution to the state-of-the-art in network moni-
toring using sketches. In Sect. 3, the design and implementation of the BitMatrix
is detailed, which is a new sketch to be used for network monitoring. In Sect. 4, an
evaluation of the BitMatrix is described, and an ML approach is presented for esti-
mating the number of hash collisions and improving the measurement from BitMa-
trix. Finally, in Sect. 5, some concluding remarks and the future scope of studies in
this area are provided.

2 � Related Work

Network monitoring is used to understand issues or problems within a network
environment. To understand, prevent, and resolve certain issues, there are numer-
ous methods available for traffic monitoring. Studies on the monitoring of network
traffic have evolved owing to an increase in traffic over the years. By monitoring,
we can extract the relevant information for network management tasks such as
attacks and anomaly detection[14, 34], forensic analysis[35], and traffic engineer-
ing[36–38]. Metrics at different levels are required for each management task, such
as the flow size distribution[18], heavy hitters[36, 39], or detection of changes in
traffic patterns[40, 16].

At a high level, there are two classes of techniques for obtaining performance
metrics. The first is a traffic measurement using counters. The most widely used
monitoring protocol for this purpose is the Simple Network Management Proto-
col, which collects real-time performance indicator values and with this avail-
able information maintains an in-memory database for queries; furthermore,
it can send alarms when an indicator threshold is reached. The second class

1  https​://githu​b.com/regis​ftm/bitma​trix.

https://github.com/regisftm/bitmatrix.

1 3

Journal of Network and Systems Management	

of techniques involves two approaches to estimate the traffic metrics. The first
approach is based on generic flow monitoring, typically using a protocol to col-
lect traffic samples to estimate these metrics. The most popular protocols are Net-
Flow[6] and sFlow[41]. Although generic flow monitoring is generally sufficient
to monitor traffic, previous studies have shown their low accuracy in generating
more fine-grained monitoring metrics[17, 42, 43]. These limitations have led to
an alternative sketching approach, where real-time algorithms and probabilistic
data structures are designed to generate specific metrics[5, 15, 42–45].

Although studies on sketching and data streaming have made a significant con-
tribution, in the long run, it remains impossible to sustain the continued creation
of dedicated algorithms. The need to support new metrics demands the develop-
ment of new algorithms, as well as the hardware and languages that support them.
Tools such as OpenSketch[5] and SCREAM[3] provide libraries that reduce the
implementation required and provide efficient resource allocation. In addition,
because sketches are implemented on demand according to the set of metrics that
require monitoring, blind spots are created for the metrics not monitored.

Most studies in this area have not addressed the fundamental problem of need-
ing to create new sketches for each task. For example, UnivMon[46] was recently
presented as a proposal for a framework that reconciles the generality and high
fidelity for a broad spectrum of monitoring tasks, and FlexSketchMon[47] was
introduced as a novel data plane architecture for collecting traffic flow statistics,
providing a flow aggregation for monitoring applications. In this context, BitMa-
trix is a lightweight sketch that is able to answer some questions at the control
plane. However, it was not designed for universal monitoring (as UnivMon) or
flexible monitoring (as FlexSketchMon). The most valuable questions that can be
answered with BitMatrix, which represent its main contributions to the current
state-of-the-art approaches, are (i) given a packet (or a flow), what is the path
traveled through the network during a specific time frame, and (ii) given only
one sketch (BitMatrix), is it possible to obtain measurement statistics for different
tenants in a multi-tenant network? We are not claiming that these questions can-
not be answered using UnivMon/FlexSketchMon, but are simply convinced that
it is not trivial (plug‘n’play) to do so without modifications to their implementa-
tions and streaming algorithms.

From the environment perspective, monitoring sketches can be implemented
in SDNs[48, 49], as well as through the use of a packet-oriented language such
as P4[30]. In addition to BitMatrix, there are some other implementations of net-
work monitoring tools in P4, some using sketches[46, 48] and others not[31, 50,
51].

In Table 1, a summary of the related studies on network monitoring using
sketches is shown. As shown in this table, there are few implementations of
sketches in P4. None of the above studies are related to the capability of multi-
tenant segmentation, and no correction mechanisms have been proposed to adjust
the numbers collected by the sketches to the real number of packets processed in
the data plane. This adjustment is of paramount importance for management tasks
that require more accurate measurements.

	 Journal of Network and Systems Management

1 3

3 � Design and Implementation of BitMatrix

As mentioned earlier, BitMatrix is composed of two common sketches: bitmaps and
counter arrays. A bitmap is a sequence of n bits with a fixed length, as shown in
Definition 1. Thus, each bit position will create an index for the bitmap, making
it possible to refer to a specific position by using this index. The bitmap is used to
mark a fingerprint of each packet processed in each network device. To determine
which index position a packet should occupy, we hash some fields from the header
of each packet.

The packet fields, used as input for the hashing algorithm, must be able to represent
the packet uniquely and may not change across the hops during the forwarding pro-
cess. The hash will be calculated using the invariant portion of the packet and the
first 8 bytes of the payload, namely, TCP, UDP, or another subsequent layer, if pre-
sent. IP fields that can be modified during the packet forwarding across the network
are not used as an input because this would result in a different index for the same
packet along its path in each network device. For the same hashing function, the
lower the size of the bitmap in bits (n), the lower the measurements accuracy owing
to the increase in the probability of hashing collisions. Because bitmaps are proba-
bilistic data structures that can only be used for distinct counting, there are no false
positives. A false positive is a relevant metric for sketches used in a set membership
problem, such as a Bloom Filter[28], and none of our intended uses for BitMatrix
requires such an answer.

According to Snoeren[52], the first 28 invariant bytes of a packet are sufficient
to differentiate almost all non-identical packets in a network. With each packet rep-
resented by an index created by hashing these fields, the bitmap was used to store

(1)bitmap = {bit_1, bit_2, bit_3,… , bit_n}

Table 1   A summary of related studies on network monitoring using sketches

Work Goals Implementation and evaluation

Lossy data structure[18] Traffic engineering Trace analyses
Reversible sketches[16] Traffic pattern detection Trace analyses
FlexSample[43] Anomaly detection, traffic monitor-

ing
Trace analyses

Sketch-based change detection[15] Anomaly detection Trace analyses
OpenSketch[5] Anomaly detection, traffic monitor-

ing
NetFPGA, trace analyses

Scream[3] Traffic engineering Trace analyses
UnivMon[46] Flow monitoring P4, trace analyses
SketchVisor[48] Top-k algorithm Open vSwitch (OvS)
FlexSketchMon[47] Flow monitoring, traffic monitor-

ing
NetFPGA

BitMatrix Flow monitoring, traffic monitor-
ing, path detection, designed for
multi-tenant monitoring

P4, trace analyses

1 3

Journal of Network and Systems Management	

fingerprints of the packets by setting to 1 (one) the bit corresponding to its index.
Initially, the bitmap has all positions set to zero, and for each packet processed, one
position, defined by the hashing of each packet, is set to 1. In this way, every time
a packet is processed, it will generate a hash number and will change the value of
the bit in the position corresponding to its index to 1. Because bitmap has fewer
positions than the hashing values, a modulo function needs to be used to adjust the
corresponding index. Modern technologies for fast packet-processing can be used to
implement such sketches directly in the data plane, including eBPF and XDP[27],
FPGA[28], and Netronome SmartNICs[53]. It is important to reinforce that only
hashing and marking operations are implemented in the data plane, and all process-
ing operations are made in the control plane.

Algorithm 1 demonstrates the procedure used to process a packet, generate a
hash, and determine the corresponding position for that packet in the bitmap vector.

Furthermore, a counter array sketch is used to store the total length of each packet
processed by the network device. A counter array is a sequence of n counters with a
fixed length, as shown in Definition 2. It will use the same hash value calculated for
the bitmap as the index for the counter array. In this way, it is possible to recover the
corresponding size (total length) of each packet by using the index from the bitmap
sketch.

3.1 � Multi‑tenant Segmentation

The use of a bitmap is limited to indistinctly marking the positions for the packets
(one bit), however, and because a bitmap is composed of a single vector of bits, a
segmentation is not allowed. In a multi-tenant environment, it may be desirable to
use one bitmap to count the packet traces for each tenant. Instead of using several
vectors individually, we propose the use of a bitmap matrix, which we call BitMa-
trix. BitMatrix is a set of m bitmaps of size n, where m is the number of tenants
and n is the size of the bitmap. In this context, BitMatrix will occupy m × n bits of

(2)counter − array = {counter_1, counter_2,… , counter_n}

	 Journal of Network and Systems Management

1 3

memory in the network device. Actually, bitmaps can be created with any number
of positions. Unfortunately, owing to the actual limitations of the P4 architecture,
to modify this number it is necessary to rewrite the source code and recompile and
embed it into the network device. Figure 1 shows the Bitmatrix structure, which is
also represented in Eq. 3. Because bitmaps will be allocated in the memory of the
network device, a power of 2 was selected to count the number of positions in Bit-
Matrix and achieve an easier memory allocation and management.

The main benefit of this method is the ability to segment the packet counting
using a single probabilistic structure. This segmentation can occur in different ways,
such as per sub-network, per network or transport protocol, or per application port.
In this paper, in a multi-tenant network scenario, BitMatrix uses a per tenant seg-
mentation approach, where every packet originated by a specific tenant, identified by
the packet source IP address, will be marked in the same bitmap in BitMatrix. The
number of bitmaps in BitMatrix will increase linearly according to the number of
tenants being monitored in the network, and will determine how many bits BitMa-
trix will use in each position.

As an example, considering a case in which BitMatrix is used to monitor traf-
fic of four tenants, consequently, it has 4 bits (one for each tenant). The first bit is
for bitmap_1, second bit is for bitmap_2, third bit is for bitmap_3, and the fourth
bit is for bitmap_4. Still, in this example, each line of BitMatrix has a single value
that can vary from 0 to 15 ( 2m − 1 , where m is the number of tenants): if there are
no packet traces hashed in that position in any of the bitmaps, the value will be 0
( 00002 ); if all bitmaps have packets hashed in the same position, the value will be 15
( 11112 ). As a consequence of this design, BitMatrix grows linearly according to the
number of tenants, i.e., if the monitored infrastructure has m tenants, our BitMatrix
will have m bitmaps stored in it.

Thus, for the marking procedure, it is insufficient to determine the position of
the packet (its index in a bitmap) in BitMatrix. It is also necessary to determine

(3)BitMatrix = {bitmap_1, bitmap_2, bitmap_3,… , bitmap_m}

Fig. 1   BitMatrix represented as
a set of n bitmaps

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

...

...

... ...

0
1
2

n-1
n

position (index)bi
tm

ap
1

bi
tm

ap
2

bi
tm

ap
m

2n positions

BitMatrix

1 3

Journal of Network and Systems Management	

which bitmap should be used to hash the fingerprint (a bit) of this packet. We
populate the bitmaps by mapping the IP addresses to binary numbers depend-
ing on the quantity of the tenants. In the example mentioned above, with four
tenants (e.g., IP A, IP B, IP C, and IP D), we mapped IP address A to bitmap_1
with a value of 0001, IP address B to bitmap_2 with a value of 0010, IP address
C to bitmap_3 with a value of 0100, and IP address D to bitmap_4 with a value
of 1000. This mapping is conducted manually in the control plane and is then
loaded by Algorithm 2, as shown in line 3. The IP source address of every packet
entering in the switch is stored in the pkt variable (line 4 in Algorithm 2) and
then compared with the bitmap vectors containing all IP addresses of the tenants
previously mapped (lines 12–17). Algorithm 2 shows a simplified version of the
procedure for finding and marking the correct bitmap in BitMatrix.

These values are written in the BitMatrix position by using a logical disjunc-
tion operator OR (line 22 in Algorithm 2), avoiding any loss of packets previ-
ously marked in the other bitmaps (tenants). To summarize, to map a packet
to a bitmap in BitMatrix we use a combination of Algorithm 1 (to determine
the position in the bitmap) and Algorithm 2 (to determine in which bitmap the
packet will be mapped).

Using this algorithm, it is possible to segment the packets stored in BitMa-
trix by creating a process to distinguish between different tenants. By doing so,
our solution can identify which tenant originated the stored fingerprints of the
packets.

	 Journal of Network and Systems Management

1 3

3.2 � Using Data from Bitmatrix

The data stored in BitMatrix is of paramount importance for network monitoring
and provide a powerful tool to obtain interesting information from the network to be
used by applications in the control plane. Some examples of information that can be
extracted from Bitmatrix are as follows:

–	 The number of unique packets crossing the network;
–	 Their origin and destination;
–	 The network devices responsible for routing such packets;
–	 The heavy-hitters and which tenant they belong to.

BitMatrix, allied with the network topology information, is sufficient to conduct the
proposed monitoring and a further analysis. Given an identical BitMatrix on every
device in the network, it is possible to have the same packet fingerprint marked pre-
cisely at the same position of BitMatrix installed on each device responsible for for-
warding such packets.

Within a fixed time period, the control plane should collect BitMatrix with all
hashed data stored on it from all network devices. To retrieve BitMatrix, a command
line interface (CLI), available in the Behavioral Model version 2 (BMv2) software
switch is used. In our testbed, the CLI is connected to the Thrift RPC server running in
each emulated network device.

Once the control plane has collected the data, several analyses can be conducted.
The number of packets processed in a specific device, per tenant and in total, can be
estimated by analyzing the information from BitMatrix by summing the bits equal to 1,
which represent packet fingerprints stored in BitMatrix. The number of packets counted
in BitMatrix will always be less than the number of packets processed by the device,
given the probability of a hash collision occurring, as discussed later in Sect. 3.3.

To estimate the number of packets for a specific tenant, it is necessary to select the
corresponding bitmap in BitMatrix, and then conduct the calculation. The total num-
ber of packets processed by a specific network device can be estimated by counting
the number of bits marked in the entire BitMatrix. Assuming that all packets from
Tenant_A are marked in bitmap_1, Eq. 4 represents the total number of packets sent
from Tenant_A, where n is the size of the bitmap for Tenant_A.

Equation 5 expresses the total number of packets processed by the network device
from where BitMatrix was collected. Here, m is the number of tenants in the net-
work, and n is the size of the bitmap for each tenant.

(4)Total number of packets from Tenant_A =

n
∑

i=1

bitmap_1[i]

(5)Total number of packets from all tenants =

m
∑

j=1

n
∑

i=1

BitMatrix[j][i]

1 3

Journal of Network and Systems Management	

To obtain the number of unique packets processed in the network, per tenant and
in total, a logical disjunction operator (OR) can be used in the bitmaps related to
each tenant, collected from BitMatrices across the network devices during the same
time period. The logical operator OR will avoid counting the same packet more than
once. Equation 6 shows the sum of the bits resulting from the logical disjunction of
all bitmaps correspondent to Tenant_A, collected from all BitMatrices in the net-
work. Here, n is the size of the bitmap. The total number of unique packets pro-
cessed in the network can be obtained by summing the total number of unique pack-
ets of all tenants.

Because each bitmap in BitMatrix corresponds to a different tenant, the source of a
packet can be determined according to the corresponding bitmap in which the packet
fingerprint is marked. The destination can be estimated by analyzing which network
devices have stored the packet fingerprint at the same position in BitMatrix. To do
so, the network topology knowledge becomes necessary. Given such information, it
is possible to create a traffic matrix between tenants and the network devices. As an
example, consider the network from Fig. 2. In this context, based on the collected

(6)Total number of unique packets of Tenant_A =

n
∑

i=1

BitMatrix[A][i]

Fig. 2   Network proposed to illustrate the task of analyzing the BitMatrix data

	 Journal of Network and Systems Management

1 3

BitMatrix from all network devices, given a fixed and known time period, it is pos-
sible to answer the following questions:2

–	 How many packets were exchanged between Tenant_A and Tenant_B?
–	 What was the network device with the highest load?
–	 What link had the higher throughput? In addition, what was its average through-

put?

3.2.1 � How Many Packets are Exchanged Between Tenant_A and Tenant_B?

To answer this question, two different analyses must be conducted. The first aims
to identify the packets sent from Tenant_A to Tenant_B, and the second aims to
identify packets sent from Tenant_B to Tenant_A. To identify packets sent from
Tenant_A to Tenant_B, once knowing the network topology and assuming the short-
est path between them, we can infer that these packets are the sum of the bits in
the corresponding bitmaps of BitMatrix from devices 1 and 2 but are not present in
devices 3 and 4. Equation 7 shows this logical operation. In this equation, bitmapx,y
represents the bitmap of tenant x in the device y, and n is the size of the bitmap (in
bits). As an example, bitmapA,1 in Eq. 7 means the bitmap of Tenant_A in Router 1.

Second, we use the same algorithm to estimate the number of packets sent from
Tenant_B to Tenant_A using the bitmaps associated with Tenant_B. Equation 8
shows these logical operations.

Finally, to answer the question, we need to determine the total number of packets
that flow between Tenant_A and Tenant_B. In this case, we need to sum the results
from Eqs. 7 and 8. Equation 9 shows the final result and the answer to the above
question.

3.2.2 � What Network Device has the Highest Traffic Load?

It is possible to estimate the network device with the highest traffic load by estimat-
ing the number of packets processed for each during the observation time. To obtain

(7)

Total A → B =

n
∑

i=1

{bitmapA,1[i] ∧ bitmapA,2[i] ∧ ¬bitmapA,3[i] ∧ ¬bitmapA,4[i]}

(8)

Total B → A =

n
∑

i=1

{bitmapB,1[i] ∧ bitmapB,2[i] ∧ ¬bitmapB,3[i] ∧ ¬bitmapB,4[i]}

(9)Total A ↔ B = (Total A → B) + (Total B → A)

2  Equations 7, 8, 9, 10, and 11 are expressed based on the topology shown in Fig. 2 for sake of the read-
ers. However, they can be generalized to any tenant, device, or link.

1 3

Journal of Network and Systems Management	

this estimation, it is necessary to sum the bits of all bitmaps in the BitMatrix of all
routers/switches in the network. Equation 10 demonstrates how to estimate the total
number of packets for a specific device (Dev_1). In this equation, m is the number of
tenants and n is the size of the bitmap in BitMatrix.

The same procedure is used to estimate the total number of packets of all other
devices in the network. Once calculated, we can sort them by the total number of
packets, determining which was the network device with the highest load in the net-
work during the observation time period.

3.2.3 � What is the Link with the Highest Throughput? In Addition, What was its
Average Throughput?

To determine which link had the highest throughput, we need to identify the packet
fingerprints present in the BitMatrices of a pair of connected devices during the
same time period. In other words, all packets present in the BitMatrices of both
Dev_1 and Dev_2 may have used the link r (Fig. 2) to travel from one device to
another. It is possible to determine the packet fingerprints that are present in both
devices by using a logical conjunction operation (AND) between the two BitMatri-
ces. Thus, to find the total number of packets that crossed this link, we need to sum
the bits of BitMatrix generated by the AND operation. Equation 11 shows the opera-
tion used to find the total number of packets that crossed the link r. In the equation,
BitMatrix1 is the BitMatrix of Dev_1 and BitMatrix2 is the BitMatrix of Dev_2,
where m is the number of tenants and n is the size of the bitmap of both BitMatrices.

Although it is possible to go from Dev_1 to Dev_2 through links t, u, and s due to an
abnormal situation, e.g., a link failure, this will not happen. In this example, we do
not considered such a possibility, although the same logical conjunction operation in
the BitMatrices of Dev_1, Dev_2, Dev_3, and Dev_4 (all devices in this alternative
path) may be used to sum the bits of the resulting BitMatrix. This sum is an estimate
of the number of packets traveling from Dev_1 to Dev_2 by using the links t, u, and
s.

To estimate the average throughput of each link, the counter array sketch must
be used. As discussed before, once the network device hashes the fingerprint of the
packets (a bit) in BitMatrix, it uses the same index to store the total length of the
packet in the correspondent counter array. Both counter arrays of Dev_1 and Dev_2
store the packet length of each packet that passes through link r. To estimate the
total amount of bytes crossing this link, it is possible to use the resulting BitMatrix
of the logical conjunction operation to find what positions to read and what values

(10)Total number of packets in Dev_1 =

m
∑

j=1

n
∑

i=1

BitMatrix[j][i]

(11)

Total number of packets between Dev_1 and Dev_2

=

m
∑

j=1

n
∑

i=1

{BitMatrix1[j][i] ∧ BitMatrix2[j][i]}

	 Journal of Network and Systems Management

1 3

to sum in the counter array. Finally, given the total packet length from the counter
array, it is possible to calculate the average throughput by dividing the total amount
of bytes by the time frame of the observation.

3.3 � Caveats and Limitations

Even using the invariant bytes of a packet for a hash calculation, it is possible that
the hashing of two different packets will result in the same value. This occurrence is
called a hash collision and creates a gap between the number of packets actually for-
warded by the network device and total number of positions marked (equal to ‘1’) in
the bitmap. There are three main factors that can cause a variation in the number of
hash collisions in the proposed scenario: (a) the size of the bitmap, or in other words
the number of positions available in the vector, (b) the occupation of the bitmap
when marking a new position, and (c) the type of hash function used to generate the
hash value.

The size of the bitmap and size of the hash value are related in the sense that
there is no point in setting a bitmap with more positions than a hash value. Positions
beyond the maximum hash value will never be used. Nevertheless, setting a bit-
map smaller than the maximum hash value will demand a modulo operation, using
the bitmap size and the resulting hash value to determine the offset for the present
packet. Finally, we need to consider the bitmap occupancy. The more occupied a bit-
map is, the greater the chances of a hash collision. In Sect. 4.3, we detail the mecha-
nism designed to adjust the hash collision.

The overhead related to the usage of Bitmatrix may be the focus of future analy-
sis. We can state that the main overhead will come from the hash algorithm used to
determine the position in BitMatrix. In this context, there are other studies that have
conducted extensive analyses related to the performance of P4 hashing algorithms
in both software and hardware. We point the readers to[46, 54] and the references
therein as example studies to achieve a better comprehension regarding the overhead
of the probabilistic structures.

4 � Evaluation and Results

As stated before, the P4 implementation of BitMatrix and its respective evalu-
ation were presented in our previous study[33]. This paper presents a simulator
whose purpose is to scale up the previous results by simulating network devices
with a BitMatrix sketch in a real-world network topology with traffic traces
from the passive equinix-sanjose CAIDA3 dataset. The simulator is designed in
Python and receives the packet traces as input, as well as the network topology
and the data collected from BitMatrix. The output generated by the simulator is
a set of CSV files imported into Tableau Software[55], where all the analyses are

3  http://www.caida​.org/data/passi​ve/passi​ve_2012_datas​et.xml.

http://www.caida.org/data/passive/passive_2012_dataset.xml

1 3

Journal of Network and Systems Management	

conducted. We used a computer with an i9 9900k CPU and 64 GB of RAM for
running the simulator.

To create a more realistic model for the tests, a network topology based on
NSFNet’92 was used, as shown in Fig. 3.

The NSFNet’92 network topology is represented as a graph for the simulation,
as shown in Fig. 4. The NSFNet’92 sites become tenants, numbered from 1 to 16.
Routers and links are also numbered, having a total of 12 routers and 31 links
interconnecting the tenants and routers. This network topology was taken as ref-
erence in an evaluation of BitMatrix presented herein.

Fig. 3   NSFNet’92 network used in the evaluation of the BitMatrix sketch

Fig. 4   Network topology showing tenants, routers, and links

	 Journal of Network and Systems Management

1 3

In addition, a routing table was installed in the routers to specify the path that a
packet needs to travel across the network to go from a source to a destination. The
same path is used for the upstream and downstream traffic. In this table, the shortest
path was used for all situations.

A different dataset and a different topology were not used because they are not
considered as variables in our proposal. The hash is calculated using the invariant
portion of the packet and the first 8 bytes of the payload. Using another dataset or
topology, when considering the same methodology to assign an ingress and egress
point in the network, the measured values will change; however, neither the algo-
rithm used to estimate the route followed by each packet nor the ML algorithm
applied to improve the accuracy of the measurements will be altered.

4.1 � BitMatrix Setup

Once the network topology is selected and the routing table is configured, the next
step is to distribute packets from the trace to the tenants. source The IP addresses of
the packets were distributed in 16 groups of networks (one group per tenant) in such
a way that each group has a similar number of packets to balance the traffic between
routers. Table 2 shows the network prefixes assigned to each tenant. Packets with a

Table 2   Tenants and their assigned group of network prefixes

Tenant Network prefixes assigned to the tenants

Tenant_1 180.0.0.0/8, 128.0.0.0/8
Tenant_2 223.0.0.0/8, 208.0.0.0/8, 55.0.0.0/8, 108.0.0.0/8
Tenant_3 48.1.159.0/24, 151.0.0.0/8, 48.0.0.0/8
Tenant_4 145.0.0.0/8, 158.0.0.0/8, 54.0.0.0/8
Tenant_5 61.0.0.0/8, 184.0.0.0/8, 181.0.0.0/8, 203.0.0.0/8
Tenant_6 48.1.136.0/24, 132.0.0.0/8, 177.0.0.0/8, 186.0.0.0/8, 197.0.0.0/8
Tenant_7 48.1.137.0/24, 83.0.0.0/8, 34.0.0.0/8, 141.0.0.0/8, 116.0.0.0/8
Tenant_8 48.2.0.0/8, 155.0.0.0/8, 49.0.0.0/8, 187.0.0.0/8, 37.0.0.0/8
Tenant_9 135.0.0.0/8, 144.0.0.0/8, 60.0.0.0/8, 220.0.0.0/8, 236.0.0.0/8, 118.0.0.0/8, 113.0.0.0/8
Tenant_10 41.0.0.0/8, 142.0.0.0/8, 147.0.0.0/8, 247.0.0.0/8, 50.0.0.0/8, 32.0.0.0/8, 125.0.0.0/8
Tenant_11 178.0.0.0/8, 70.0.0.0/8, 221.0.0.0/8, 148.0.0.0/8, 248.0.0.0/8, 219.0.0.0/8, 152.0.0.0/8,

138.0.0.0/8, 115.0.0.0/8
Tenant_12 53.0.0.0/8, 150.0.0.0/8, 48.1.156.0/24, 201.0.0.0/8, 42.0.0.0/8, 228.0.0.0/8, 68.0.0.0/8,

104.0.0.0/8, 35.0.0.0/8, 85.0.0.0/8
Tenant_13 39.0.0.0/8, 159.0.0.0/8, 183.0.0.0/8, 36.0.0.0/8, 33.0.0.0/8, 112.0.0.0/8, 182.0.0.0/8,

242.0.0.0/8
Tenant_14 143.0.0.0/8, 218.0.0.0/8, 79.0.0.0/8, 78.0.0.0/8, 77.0.0.0/8, 253.0.0.0/8, 254.0.0.0/8,

163.0.0.0/8, 98.0.0.0/8, 109.0.0.0/8, 105.0.0.0/8
Tenant_15 176.0.0.0/8, 40.0.0.0/8, 140.0.0.0/8, 190.0.0.0/8, 149.0.0.0/8, 43.0.0.0/8, 146.0.0.0/8,

231.0.0.0/8, 174.0.0.0/8, 48.1.226.0/24, 80.0.0.0/8, 84.0.0.0/8, 134.0.0.0/8,
131.0.0.0/8, 210.0.0.0/8

Tenant_16 0.0.0.0/0

1 3

Journal of Network and Systems Management	

source IP address not belonging to any of the prefixes assigned from Tenant_1 to
Tenant_15 were assigned to Tenant_16, which is a type of “catch-all” tenant.

To determine how many packets should be processed before collecting the sta-
tistics and resetting the counters, it is necessary to configure the simulator. Once
the bandwidth of the links was arbitrarily defined as 100 Mbps, the question of how
many packets per second per tenant does the simulator need to process the respec-
tive the bandwidth of the links was derived. The monitoring time frame for Bit-
Matrix was configured as 10 s, and the total simulation time was set to 30 min. To
calibrate the simulation and answer the previous question, an empirical evaluation of
the maximum rate of pps for each tenant was conducted, and Fig. 5 shows the result.
On average, the simulator processed a batch of 430,000 packets every 10 s resulting
in a rate of 43,000 pps. With this number of packets processed, we can maintain the
simulated traffic under a pre-determined link capacity of 100 Mbps.

The next configuration step is related to adjusting the BitMatrix parameters on
each router: its length (in bits) and the epoch (monitoring time frame). According
to the previous evaluation, the epoch was set to 10 s, or 430,000 packets for all ten-
ants. Based on this evaluation, the length of the bitmaps of the BitMatrix was set to
65,536 bits, thus, the total size of each Bitmatrix in each device is 16 × 65,536 bits
(131 KB), which is quite acceptable considering the size of the memory used in cur-
rent physical forwarding devices. This size was chosen to maintain a low level of
occupancy of each BitMatrix as well as to avoid a high number of hash collisions.

It is important to note here that m, i.e., the number of tenants in the network, does
not have an effect on the results, and will only influence the amount of memory used

Fig. 5   Average throughput per link. The monitoring time frame is set to 10 s

	 Journal of Network and Systems Management

1 3

by BitMatrix because a bitmap exists for each tenant. In summary, m affects only
the total size of Bitmatrix. Regarding n, i.e., the size of the bitmaps in BitMatrix, it
will have an influence on the hashing collision rate because the lower the size of the
bitmap, the greater the probability of having a hashing collision to mark the packets
into the bitmap. Increasing the collision rate will increase the error in our counting
estimation and reduce the accuracy of our measurements. We conducted an evalua-
tion on the occupation versus collision rate in two previous studies[33, 56].

In both[33, 56] an evaluation of the relation between three variables was con-
ducted, namely, the size of the bitmap, its occupation, and the throughput of the
monitored network. These three variables are tied to the collision rate of the hashing
function as follows: the smaller the size of the bitmap, the greater the probability of
having collisions marking the packets in the bitmap; the greater the occupancy of
the bitmap, the greater the chance of collisions occurring; and finally, the greater the
throughput of the network, the faster the occupancy of the bitmap. It is possible to
control the size of the bitmap and the desired occupancy for any monitoring system
based on sketches, despite the throughput of the network being beyond the control
of the network manager, as it follows different loading along the time. For this rea-
son, it is not possible to generate a fixed equation that points to the best configura-
tion n for a specific network. The network manager must maintain these variables
and continuously monitor the accuracy of the measurements and modify its BitMa-
trix configuration.

4.2 � BitMatrix Evaluation Overview

To analyze the statistics generated by the BitMatrices on each router, we used Tab-
leau software. The information extracted from BitMatrix using CLI and the Thrift
RPC server available in each software switch was compared to the real information

Fig. 6   Average throughput per router, in pps. The monitoring time frame is set to 10 s

1 3

Journal of Network and Systems Management	

obtained from packets and byte counters in the simulator. This comparison is pre-
sented in Sect. 4.3. The simulator processed a total of 77,400,000 packets from the
trace. Figure 6 shows the average pps rate per router during the 30 min simulation.

Analyzing Fig. 6, the router with a higher pps rate is Router_12. To observe the
traffic in Router_12, the details of the traffic in this router, broken down by tenant,
are shown in Fig. 7.

From Fig. 7, it is possible to identify that tenants 3, 15, and 16 are the heavy hit-
ters of router_12, i.e., the tenants that send/receive more traffic (measured in pps) to/

Fig. 7   Average throughput per tenant on Router_12, in pps. The monitoring time frame is set to 10  s

Fig. 8   Average throughput per tenant (all routers), in pps. The monitoring time frame is set to 10 s

	 Journal of Network and Systems Management

1 3

from router_12. router_12 is one of two possible paths to all other tenants used to
reach tenants 15 and 16, and thus a higher pps in this router is observed (see Fig. 4).
Tenant 3 was identified as a heavy hitter, and thus it also has a high pps.

As an assumption when exemplifying the power of BitMatrix, it is possible to see
from Fig. 4 that both tenants 15 and 16 are directly connected to router_12, and thus
the unexpected traffic load is to/from tenant_3. Let us analyze the traffic per tenant
in the network to better understand the traffic profile of each tenant. Figure 8 shows
the total traffic, per tenant, in the network.

From Fig. 8, it can be seen that the higher traffic in the network is to/from ten-
ant_3, which can be identified as the biggest offender in the network. Figure 9 pre-
sents a dashboard with a complete view representing the total traffic contribution,
per tenant, on each router. For an efficient visualization, the percentage is only pre-
sented for the tenant with the highest contribution.

Several other analyses can be applied. Using the simulator, it was possible
to obtain insight and better understand the power when using the packet digested
(sketch) information from BitMatrix. It is important to highlight that, because the
information is collected every 10 s during this evaluation, a near real-time perspec-
tive regarding the network behavior and performance analysis is offered to the net-
work administrator.

However, because BitMatrix has a probabilistic data structure, hash collisions
may introduce errors in the measurements conducted when using the data collected
from the sketches. In the next section (Sect. 4.3), we explore statistics regarding

Fig. 9   Dashboard showing the traffic contribution of each tenant per router

1 3

Journal of Network and Systems Management	

collisions and the bitmap occupation, and propose a model based on a polynomial
regression to adjust the results compensating the measurement errors from hash
collisions.

4.3 � BitMatrix Measurement Evaluation

The simulator generates one BitMatrix containing 16 bitmaps and 16 counter
arrays (one per tenant), per router, at every 10 s or for every 430,000 packets

Fig. 10   Number of packets measured by BitMatrix and the packet counter for router_2 and tenant_11.
The monitoring time frame is set to 10 s

Fig. 11   Number of packets measured by BitMatrix and the packet counter for router_1 and tenant_1. The
monitoring time frame is set to 10 s

	 Journal of Network and Systems Management

1 3

processed on average. In total, after processing the packets to simulate 30 min of
traffic, it creates approximately 34,500 bitmaps and counter arrays. In addition
to generating BitMatrices, the simulator was also used to create real packets and
byte counters to evaluate the quality of the information provided by BitMatrix.
When comparing the measurements from the bitmaps and these real counters, a
gap between the two can be seen.

Figures 10, 11, and 12 show the difference between the measurements based
on BitMatrix and the packet/byte counter implemented in the simulator. The

Fig. 12   Number of packets measured by BitMatrix and the packet counter for router_3 and tenant_3. The
monitoring time frame is set to 10 s

Fig. 13   Percentage of bitmap occupation versus the percentage of collisions, per bitmap

1 3

Journal of Network and Systems Management	

packet counter reports the real number of packets/bytes processed, and BitMatrix
estimates its number by using data from the sketches.

From these figures, it can be seen that the measurement error of BitMa-
trix increases as more packets are processed. The difference shown in Fig. 11
is greater than that in Fig. 10; in addition, the difference in Fig. 12 is greater
than that in Fig. 11. This occurs as a result of the increase in the hash collisions
as more packets are processed, and because the size of BitMatrix is the same in
all routers. Thus, the chances of a collision increase as BitMatrix becomes more
occupied.

Aiming to find an algorithm based on the historical data to apply an adjust-
ment to the BitMatrix measurements, approximating it to real values, the relation
between the BitMatrix occupation and the percentage of hash collisions was used
to train and test the ML model. Figure 13 shows the relation between these two
measurements.

To estimate the occupation of BitMatrix and the percentage of hash collisions,
the size of the bitmap in BitMatrix was used as a reference in Eqs. 12 and 13,
respectively. Here, n is the size of the bitmap, in bits. For the sake of simplifica-
tion, in Eq. 12 the index of the tenant is represented as “any,” [], i.e., the bitmaps
are from the same tenant. As stated in this section, BitMatrix was set to 65,536
bits and consequently the bitmaps in BitMatrix have the same size. The repre-
sentation shown in Fig. 13 also uses this approach. During the simulation, if the
simulator counts 2000 collisions when storing the packets for the same tenant in
BitMatrix, the percentage of collisions will be 2000 divided by 65,536, which
is 3.051758%.

In a more realistic scenario, it is not desirable to have one more counter in the data
plane to count the number of hash collisions. Thus, the idea is to use the bitmap
occupation rate and estimate the number of collisions. This idea was used to create
an ML model, and using this prediction it is possible to adjust the BitMatrix meas-
urements, which incurs a smaller error and better approximation into the real values.

(12)% of occupation =

(

n
∑

i=1

BitMatrix[][i]

)

∕n

(13)% of collisions = total number of collisions∕n

Table 3   Database partitioning for k-fold cross validation

Partition # Training set Test set

Partition 1 [Index] < 26881 [Index] > 26880
Partition 2 [Index] > 6720 [Index] < 6721
Partition 3 [Index] < 6721 OR [Index] > 13440 [Index] > 6720 AND [Index] < 13441
Partition 4 [Index] < 13441 OR [Index] > 20160 [Index] > 13440 AND [Index] < 20161
Partition 5 [Index] < 20161 OR [Index] > 26880 [Index] > 20160 AND [Index] < 26881

	 Journal of Network and Systems Management

1 3

4.4 � Use of ML Algorithms to Predict the Number of Hash Collisions

To predict the hash collision rate in the network, linear and polynomial regression
algorithms were evaluated. First, they were trained as a part of an ML technique.
For the training phase, a bitmap database with 33,600 samples of hash collisions
in a real network implemented in P4 was used. This database was divided into
five partitions of 6720 samples each for the k-fold validation. In the k-fold vali-
dation, we used four partitions for training the algorithm and one partition for
testing. Each field of the database has its own index, from 1 to 33,600. The index
field was used for the field selection, as shown in Table 3.

Table 4 shows the results for the k-fold cross-validation process. The mean
squared error (MSE) is the average for the five partitions, and may help in select-
ing the best polynomial algorithm for application to the prediction problem. The
lower the error that occurs, the better the result. The table is sorted in ascending
order, with the best results shown first.

As a result of the training and testing phases, Eq. 14 expresses the number of
collisions as a function of the occupation (occupation), in percent (%). In this
same equation, n is the bitmap size in BitMatrix. It is important to highlight that
Eq. 14 applies to any other traffic dataset as well, the only requirement being that
with any other ML technique, the algorithm must be retrained allowing new input
values for the equation to be generated. We can even vary the size of the bitmaps
(n) to have greater or less accuracy as desired.

Using this result, the adjusted bitmap is used as a more accurate data source for the
measurements when using BitMatrix. Equation 15 expresses the estimated number
of packets in the adjusted bitmap as a function of the predicted number of collisions.
Here, n is the size of the bitmap, in bits.

(14)

number of collisions =n ∗ (0.0600287 ∗ occupation4)

+ (−0.226063 ∗ occupation3) + (0.531893 ∗ occupation2)

+ (0.0019715 ∗ occupation1) + 0.000701056)

Table 4   Average MSE and
average standard deviation
(StdDev) for the testing database

Method Average mean
squared error

Average std. deviation

Polynomial degree 4 1.76E−05 0.039634
Polynomial degree 3 1.84E−05 0.039674
Polynomial degree 2 3.66E−05 0.039381
Linear 4.95E−04 0.034805
Logarithmic 1.30E−03 0.025877
Exponential 5.96E−00 2.466112

1 3

Journal of Network and Systems Management	

Figures 14, 15, and 16 show three values for comparison:

(15)

number of packets in the adjusted bitmap

= number of collisions +

n
∑

i=1

bitmap[i]

Fig. 14   Number of packets processed as measured by BitMatrix counter, packet counter, and BitMatrix
adjusted for router_2 and tenant_11. The monitoring time frame is set to 10 s

Fig. 15   Number of packets processed as measured by BitMatrix counter, packet counter, and BitMatrix
adjusted for router_1 and tenant_1. The monitoring time frame is set to 10 s

	 Journal of Network and Systems Management

1 3

1.	 BitMatrix counter: This is the result of the counted packets by summarizing the
number of bits in the original bitmap.

2.	 Packet counter: This is the real number of packets counted by a counter in the
simulator and is used as a reference.

3.	 BitMatrix adjusted: This is the result of the packets counted by summarizing the
number of bits in the bitmap, and adjusting this value by using the polynomial
regression algorithm based on the bitmap occupation. This line (in green) in the
graph is overlapped by the packet counter line (in orange) and is not well percep-
tible.

The adjusted BitMatrix measurement has a mean absolute percentage error of
±6.14%. It is also possible to observe that, even under a low or high occupation, the
performance of the algorithm does not decrease.

5 � Conclusion and Future Studies

Network monitoring is a crucial task for a network operator. Information pro-
vided by the monitoring tools offers intelligence for the decision-making process
for capacity planning and traffic engineering. The solution proposed in this paper,
a BitMatrix sketch, goes further than a traditional monitoring process. In addition
to general statistics, it enables detailed analyses to be segmented per tenant. The
solution presented in this paper differs from previous solutions in the sense that sev-
eral data analyses can be conducted in the control plane by means of the sketches
collected through BitMatrix. We found that the counters collected are not useful if
not properly observed through a proper correlation of data, which must be applied
in the control plane. This hidden information cannot be obtained by looking at raw
counters.

Fig. 16   Number of packets processed as measured by BitMatrix counter, packet counter, and BitMatrix
adjusted for router_3 and tenant_3. The monitoring time frame is set to 10 s

1 3

Journal of Network and Systems Management	

To process real traffic captured in a simulated network, we used CAIDA traces
to produce a considerable number of traffic statistics for routers, broken down by a
tenant. Moreover, another key contribution of this study is that using the generated
statistics from this simulation, we created an algorithm, using supervised ML, to
reduce the errors introduced by hash collisions.

The model presented in this paper is a powerful mechanism to minimize the
measurement errors caused by hash collisions, and may be applied to other scenar-
ios, not only those related to packet counting. In this study, linear and polynomial
regression algorithms are used; however, other algorithms may be trained and tested
using the same traces.

The development and evaluation of BitMatrix can be improved in many ways. A
more user-friendly interface is required for creating rules to generate specific infor-
mation from data stored in BitMatrix. Another task will be to speed up the statistics
module, using an extract, transform, load tool to retrieve data periodically from Bit-
Matrix, and aggregate the metrics (number of packets and bytes) based on the net-
work device and tenant dimensions. We also believe that the BitMatrix structure is
a first step toward the segmented monitoring of slices, which has gained significant
attention in recent studies related to 5G, cloud computing, and IoT verticals.

Acknowledgements  The authors would like to thank CAPES, CNPq, FAPES, NECOS and FAPESP for
partially supporting this research.

References

	 1.	 CISCO: 2020 global networking trends report. Tech. rep., CISCO (2019). https​://engag​e2dem​and.
cisco​.com/LP=18332​?ccid=cc001​244&oid=rpten​01861​2. Accessed 6 Jan 2020

	 2.	 Dimitropoulos, X., Hurley, P., Kind, A.: Probabilistic lossy counting: an efficient algorithm for find-
ing heavy hitters. Comput. Commun. Rev. 38, 5 (2008)

	 3.	 Moshref, M., Yu, M., Govindan, R., Vahdat, A.: Scream: sketch resource allocation for software-
defined measurement. In: Proceedings of the 11th ACM conference on emerging networking
experiments and technologies, CoNEXT ’15, pp. 14:1–14:13. ACM, Heidelberg (2015). https​://doi.
org/10.1145/27162​81.28360​99

	 4.	 Moshref, M., Yu, M.Y., Govindan, R., Vahdat, A.: DREAM: Dynamic resource allocation for soft-
ware-defined measurement . Proceedings of the 2014 ACM SIGCOMM conference (2014)

	 5.	 Yu, M., Jose, L., Miao, R.: Software defined traffic measurement with opensketch. In: Proceedings
of the 10th USENIX conference on networked systems design and implementation, NSDI’13, pp.
29–42. USENIX Association, Lombard (2013). http://dl.acm.org/citat​ion.cfm?id=24826​26.24826​
31

	 6.	 Claise, B.: Cisco systems NetFlow services export version 9. RFC 3954, Cisco Systems (2004).
https​://tools​.ietf.org/html/rfc39​54. Accessed 6 Jan 2020

	 7.	 sflow-rt (2019). https​://sflow​-rt.com/. Accessed 9 Aug 2019
	 8.	 Gibbons, P.B., Matias, Y.: New sampling-based summary statistics for improving approximate

query answers. ACM SIGMOD Rec. (1999). https​://doi.org/10.1145/27630​4.27633​4
	 9.	 Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet packet streams with

limited space. In: Möhring, R., Raman, R. (eds.) Algorithms—ESA 2002, pp. 348–360. Springer,
Berlin (2002)

	10.	 Kamiyama, N., Mori, T.: Simple and accurate identification of high-rate flows by packet sampling.
In: Proceedings IEEE INFOCOM 2006. In: 25TH IEEE international conference on computer com-
munications, pp. 1–13 (2006). https​://doi.org/10.1109/INFOC​OM.2006.324

	11.	 Babcock, B., Olston, C.: Distributed top-k monitoring. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (2003). https​://doi.org/10.1145/87275​7.87276​4

https://engage2demand.cisco.com/LP=18332?ccid=cc001244&oid=rpten018612
https://engage2demand.cisco.com/LP=18332?ccid=cc001244&oid=rpten018612
https://doi.org/10.1145/2716281.2836099
https://doi.org/10.1145/2716281.2836099
http://dl.acm.org/citation.cfm?id=2482626.2482631
http://dl.acm.org/citation.cfm?id=2482626.2482631
https://tools.ietf.org/html/rfc3954
https://sflow-rt.com/
https://doi.org/10.1145/276304.276334
https://doi.org/10.1109/INFOCOM.2006.324
https://doi.org/10.1145/872757.872764

	 Journal of Network and Systems Management

1 3

	12.	 Zhao, Q.G., Kumar, A., Wang, J., Xu, J.J.: Data streaming algorithms for accurate and efficient
measurement of traffic and flow matrices. In: Proceedings of the 2005 ACM sigmetrics international
conference on measurement and modeling of computer systems, SIGMETRICS ’05, pp. 350–361.
ACM, Banff (2005). https​://doi.org/10.1145/10642​12.10642​58

	13.	 Bandi, N., Metwally, A., Agrawal, D., El Abbadi, A.: Fast data stream algorithms using associative
memories. In: Proceedings of the 2007 ACM SIGMOD international conference on management of
data, SIGMOD ’07, pp. 247–256. ACM, Beijing (2007). https​://doi.org/10.1145/12474​80.12475​10

	14.	 Mathew, R., Katkar, V.: Survey of low rate dos attack detection mechanisms. In: Proceedings of
the international conference & 38; workshop on emerging trends in technology, ICWET ’11, pp.
955–958. ACM, Mumbai (2011). https​://doi.org/10.1145/19800​22.19802​27

	15.	 Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based change detection: methods, evalua-
tion, and applications. In: Proceedings of the 3rd ACM SIGCOMM conference on internet measure-
ment, IMC ’03, pp. 234–247. ACM, Miami Beach (2003). https​://doi.org/10.1145/94820​5.94823​6

	16.	 Schweller, R., Gupta, A., Parsons, E., Chen, Y.: Reversible sketches for efficient and accurate
change detection over network data streams. In: Proceedings of the 4th ACM SIGCOMM con-
ference on internet measurement, IMC ’04, pp. 207–212. ACM, Taormina (2004). https​://doi.
org/10.1145/10287​88.10288​14

	17.	 Duffield, N., Lund, C., Thorup, M.: Estimating flow distributions from sampled flow statistics.
IEEE/ACM Trans. Netw. 13(5), 933–946 (2005). https​://doi.org/10.1109/TNET.2005.85287​4

	18.	 Kumar, A., Sung, M., Xu, J.J., Wang, J.: Data streaming algorithms for efficient and accurate esti-
mation of flow size distribution. SIGMETRICS Perform. Eval. Rev. 32(1), 177–188 (2004). https​://
doi.org/10.1145/10128​88.10057​09

	19.	 Guanyao Huang, Lall, A., Chuah, C., Jun Xu: Uncovering global icebergs in distributed monitors.
In: 2009 17th international workshop on quality of service, pp. 1–9 (2009)

	20.	 Sanjuàs-Cuxart, J., Barlet-Ros, P., Duffield, N., Kompella, R.: Sketching the delay: tracking tempo-
rally uncorrelated flow-level latencies. Proceedings of the ACM SIGCOMM internet measurement
conference, IMC (2011). https​://doi.org/10.1145/20688​16.20688​61

	21.	 Zhang, Y., Singh, S., Sen, S., Duffield, N., Lund, C.: Online identification of hierarchical heavy hit-
ters: algorithms, evaluation, and applications. In: Proceedings of the 4th ACM SIGCOMM confer-
ence on internet measurement, IMC ’04, p. 101–114. Association for Computing Machinery, New
York (2004). https​://doi.org/10.1145/10287​88.10288​02

	22.	 Li, X., Bian, F., Crovella, M., Diot, C., Govindan, R., Iannaccone, G., Lakhina, A.: Detection and
identification of network anomalies using sketch subspaces. In: Proceedings of the 6th ACM sig-
comm conference on internet measurement, IMC ’06, p. 147–152. Association for Computing
Machinery, New York (2006). https​://doi.org/10.1145/11770​80.11770​99

	23.	 Huang, Q., Lee, P.P.: A hybrid local and distributed sketching design for accurate and scalable
heavy key detection in network data streams. Comput. Netw. 91(C), 298–315 (2015). https​://doi.
org/10.1016/j.comne​t.2015.08.025

	24.	 Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch and its
applications. J. Algorithms 55(1), 58–75 (2005). https​://doi.org/10.1016/j.jalgo​r.2003.12.001

	25.	 Estan, C., Varghese, G.: New directions in traffic measurement and accounting: Focusing on the
elephants, ignoring the mice. ACM Trans. Comput. Syst. 21, 270–313 (2003)

	26.	 Mitzenmacher, M., Pagh, R., Pham, N.: Efficient estimation for high similarities using odd sketches.
In: Proceedings of the 23rd international conference on world wide web, WWW ’14, pp. 109–118.
Association for Computing Machinery, New York (2014). https​://doi.org/10.1145/25664​86.25680​17

	27.	 Vieira, M.A.M., Castanho, M.S., Pacífico, R.D.G., Santos, E.R.S., Júnior, E.P.M.C., Vieira, L.F.M.:
Fast packet processing with ebpf and xdp: concepts, code, challenges, and applications. ACM Com-
put. Surv. (2020). https​://doi.org/10.1145/33710​38

	28.	 Pacífico, R.D.G., Silva, L.B., Coelho, G.R., Silva, P.G., Vieira, A.B., Vieira, M.A.M., Ítalo, F.S.C.,
Vieira, L.F.M., Nacif, J.A.M.: Bloomtime: space-efficient stateful tracking of time-dependent net-
work performance metrics. Telecommun. Syst. (2020). https​://doi.org/10.1007/s1123​5-020-00653​-1

	29.	 Li, Y., Miao, R., Kim, C., Yu, M.: Flowradar: a better netflow for data centers. In: 13th USENIX
symposium on networked systems design and implementation (NSDI 16), pp. 311–324. USENIX
Association, Santa Clara (2016)

	30.	 Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco, D.,
Vahdat, A., Varghese, G., Walker, D.: P4: programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev. 44(3), 87–95 (2014). https​://doi.org/10.1145/26568​77.26568​
90

https://doi.org/10.1145/1064212.1064258
https://doi.org/10.1145/1247480.1247510
https://doi.org/10.1145/1980022.1980227
https://doi.org/10.1145/948205.948236
https://doi.org/10.1145/1028788.1028814
https://doi.org/10.1145/1028788.1028814
https://doi.org/10.1109/TNET.2005.852874
https://doi.org/10.1145/1012888.1005709
https://doi.org/10.1145/1012888.1005709
https://doi.org/10.1145/2068816.2068861
https://doi.org/10.1145/1028788.1028802
https://doi.org/10.1145/1177080.1177099
https://doi.org/10.1016/j.comnet.2015.08.025
https://doi.org/10.1016/j.comnet.2015.08.025
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1145/2566486.2568017
https://doi.org/10.1145/3371038
https://doi.org/10.1007/s11235-020-00653-1
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890

1 3

Journal of Network and Systems Management	

	31.	 Kim, C., Sivaraman, A., Katta, N., Bas, A., Dixit, A., Wobker, L.J.: In-band network telemetry via
programmable dataplanes. In: Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, SOSR ’15. ACM, Santa Clara (2015)

	32.	 Sivaraman, V., Narayana, S., Rottenstreich, O., Muthukrishnan, S., Rexford, J.: Heavy-hitter detec-
tion entirely in the data plane. In: Proceedings of the symposium on SDN research, SOSR ’17, pp.
164–176. ACM, Santa Clara (2017). https​://doi.org/10.1145/30502​20.30637​72

	33.	 Martins, R., Garcia, L.F., Villaça, R., Verdi, F.L.: Using probabilistic data structures for monitoring
of multi-tenant p4-based networks. In: Proceedings of the IEEE symposium on computers and com-
munications, ICC ’18. IEEE (2018). https​://doi.org/10.1109/ISCC.2018.85383​52

	34.	 Zhang, Y.: An adaptive flow counting method for anomaly detection in sdn. In: Proceedings of the
9th ACM conference on emerging networking experiments and technologies, CoNEXT ’13, pp.
25–30. ACM, Santa Barbara (2013). https​://doi.org/10.1145/25353​72.25354​11

	35.	 Xie, Y., Sekar, V., Maltz, D.A., Reiter, M.K., Zhang, H.: Worm origin identification using random
moonwalks. In: 2005 IEEE symposium on security and privacy (S P’05), pp. 242–256. IEEE, Oak-
land (2005). https​://doi.org/10.1109/SP.2005.23

	36.	 Benson, T., Anand, A., Akella, A., Zhang, M.: Microte: fine grained traffic engineering for data
centers. In: Proceedings of the seventh conference on emerging networking experiments and tech-
nologies, CoNEXT ’11, pp. 8:1–8:12. ACM, Tokyo (2011). https​://doi.org/10.1145/20792​96.20793​
04

	37.	 Feldmann, A., Greenberg, A., Lund, C., Reingold, N., Rexford, J., True, F.: Deriving traffic demands
for operational ip networks: methodology and experience. IEEE/ACM Trans. Netw. 9(3), 265–280
(2001). https​://doi.org/10.1109/90.92985​0

	38.	 Wang, N., Ho, K., Pavlou, G., Howarth, M.: An overview of routing optimization for internet traf-
fic engineering. Commun. Surveys Tuts. 10(1), 36–56 (2008). https​://doi.org/10.1109/COMST​
.2008.44836​69

	39.	 Sivaraman, V., Narayana, S., Rottenstreich, O., Muthukrishnan, S., Rexford, J.: Heavy-hitter
detection entirely in the data plane. In: Proceedings of the symposium on SDN research, SOSR
’17, p. 164–176. Association for computing machinery, New York, NY, USA (2017). https​://doi.
org/10.1145/30502​20.30637​72

	40.	 Kim, J., Sim, A.: A new approach to multivariate network traffic analysis. J. Comput. Sci. Technol.
34(2), 388–402 (2019). https​://doi.org/10.1007/s1139​0-019-1915-y

	41.	 Phaal, P., Panchen, A.S., McKee, N.: InMon corporation’s sFlow: a method for monitoring traffic
in switched and routed networks. RFC 3176, internet engineering task force (IETF) (2001). https​://
tools​.ietf.org/html/rfc31​76

	42.	 Estan, C., Varghese, G.: New directions in traffic measurement and accounting. In: Proceedings of
the 1st ACM SIGCOMM workshop on Internet Measurement, IMW ’01, pp. 75–80. ACM, San
Francisco (2001). https​://doi.org/10.1145/50520​2.50521​2

	43.	 Ramachandran, A., Seetharaman, S., Feamster, N., Vazirani, V.: Fast monitoring of traffic subpopu-
lations. In: Proceedings of the 8th ACM SIGCOMM conference on internet measurement, IMC ’08,
pp. 257–270. ACM, Vouliagmeni (2008). https​://doi.org/10.1145/14525​20.14525​51

	44.	 Braverman, V., Liu, Z., Singh, T., Vinodchandran, N.V., Yang, L.F.: New bounds for the CLIQUE-
GAP problem using graph decomposition theory. In: Mathematical Foundations of Computer Sci-
ence 2015: 40th International Symposium, MFCS 2015, Milan, Italy, August 24–28, 2015, Proceed-
ings, Part II, pp. 151–162 (2015)

	45.	 Lall, A., Sekar, V., Ogihara, M., Xu, J., Zhang, H.: Data streaming algorithms for estimating
entropy of network traffic. SIGMETRICS Perform. Eval. Rev. 34(1), 145–156 (2006). https​://doi.
org/10.1145/11401​03.11402​95

	46.	 Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., Braverman, V.: One sketch to rule them all: Rethink-
ing network flow monitoring with univmon. In: Proceedings of the 2016 ACM SIGCOMM con-
ference, SIGCOMM ’16, pp. 101–114. ACM, Florianopolis (2016). https​://doi.org/10.1145/29348​
72.29349​06

	47.	 Wellem, T., Lai, Y., Huang, C., Chung, W.: A flexible sketch-based network traffic monitoring infra-
structure. IEEE Access 7, 92476–92498 (2019)

	48.	 Huang, Q., Jin, X., Lee, P.P.C., Li, R., Tang, L., Chen, Y.C., Zhang, G.: Sketchvisor: Robust net-
work measurement for software packet processing. In: Proceedings of the conference of the ACM
special interest group on data communication, SIGCOMM ’17, pp. 113–126. ACM, Los Angeles
(2017). https​://doi.org/10.1145/30988​22.30988​31

https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1109/ISCC.2018.8538352
https://doi.org/10.1145/2535372.2535411
https://doi.org/10.1109/SP.2005.23
https://doi.org/10.1145/2079296.2079304
https://doi.org/10.1145/2079296.2079304
https://doi.org/10.1109/90.929850
https://doi.org/10.1109/COMST.2008.4483669
https://doi.org/10.1109/COMST.2008.4483669
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1007/s11390-019-1915-y
https://tools.ietf.org/html/rfc3176
https://tools.ietf.org/html/rfc3176
https://doi.org/10.1145/505202.505212
https://doi.org/10.1145/1452520.1452551
https://doi.org/10.1145/1140103.1140295
https://doi.org/10.1145/1140103.1140295
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/3098822.3098831

	 Journal of Network and Systems Management

1 3

	49.	 Shahbaz, M., Choi, S., Pfaff, B., Kim, C., Feamster, N., McKeown, N., Rexford, J.: Pisces: A
programmable, protocol-independent software switch. In: Proceedings of the 2016 ACM SIG-
COMM conference, SIGCOMM ’16, pp. 525–538. ACM, Florianopolis (2016). https​://doi.
org/10.1145/29348​72.29348​86

	50.	 Dang, H.T., Canini, M., Pedone, F., Soulé, R.: Paxos made switch-y. SIGCOMM Comput. Com-
mun. Rev. 46(2), 18–24 (2016). https​://doi.org/10.1145/29356​34.29356​38

	51.	 Sivaraman, A., Kim, C., Krishnamoorthy, R., Dixit, A., Budiu, M.: Dc.p4: Programming the for-
warding plane of a data-center switch. In: Proceedings of the 1st ACM SIGCOMM symposium on
software defined networking research, SOSR ’15, pp. 2:1–2:8. ACM, Santa Clara (2015). https​://
doi.org/10.1145/27749​93.27750​07

	52.	 Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Kent, S.T., Strayer, W.T.:
Hash-based ip traceback. SIGCOMM Comput. Commun. Rev. 31(4), 3–14 (2001). https​://doi.
org/10.1145/96472​3.38306​0

	53.	 NETRONOME: Netronome Agilio SmartNIC. https​://www.netro​nome.com/produ​cts/agili​o-cx/
(2020). Accessed 18 Mar 2020

	54.	 Yang, T., Jiang, J., Liu, P., Huang, Q., Gong, J., Zhou, Y., Miao, R., Li, X., Uhlig, S.: Elastic sketch:
adaptive and fast network-wide measurements. In: Proceedings of the 2018 ACM SIGCOMM con-
ference, SIGCOMM ’18. ACM (2018)

	55.	 Tableau: Tableau Software. https​://www.table​au.com/ (2020). Accessed 02 May 2020
	56.	 Martins, R.: Packet routing analyses using probabilistic data structures in Multi-Tenant Networks

based on programmable devices. Master Thesis. Federal University of Sāo Carlos, UFSCar (2018).
https​://repos​itori​o.ufsca​r.br/handl​e/ufsca​r/11892​

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Regis Francisco Teles Martins  is graduated in Electrical Engineering from Universidade Santa Úrsula
(2008) and Master in Computer Science from Universidade Federal de São Carlos—Campus Sorocaba
(2019). He is currently a pre-sales engineer at Sandvine Incorporated ULC and has experience in the field
of Electrical Engineering, with an emphasis on Telecommunications Systems.

Rodolfo da Silva Villaça  is an assistant professor at the Industrial Technology Department (DTI) of the
Federal University of Espirito Santo (Ufes). He received his Ph.D. in Computer Engineering in 2013
at the University of Campinas (Unicamp). He also holds a Computer Engineering degree and a M.Sc.
in Electrical Engineering, both from the Federal University of Espirito Santo (Ufes). His main research
Interests are in the Computing Systems area. He was the Coordinator of the Point of Presence of the
Brazilian National Education and Research Network (RNP) in the state of Espírito Santo (PoP-ES) from
August/2016 to February/2020.

Fábio L. Verdi  is an Associate Professor at the Computing Department in Federal University of São Car-
los (UFSCar) campus Sorocaba. He received his Master degree in Computer Science and Ph.D. degree
in Electrical Engineering both from State University of Campinas (UNICAMP). Fábio has been working
with data centers, cloud computing and SDN. He is the coordinator of the LERIS Research Group and
has been leading projects in the area of monitoring of virtual resources and cloud infrastructures. Cur-
rently, he is member of the NECOS Project (BR-EU joint call) and FIXP Project (MCTIC/FAPESP).

https://doi.org/10.1145/2934872.2934886
https://doi.org/10.1145/2934872.2934886
https://doi.org/10.1145/2935634.2935638
https://doi.org/10.1145/2774993.2775007
https://doi.org/10.1145/2774993.2775007
https://doi.org/10.1145/964723.383060
https://doi.org/10.1145/964723.383060
https://www.netronome.com/products/agilio-cx/
https://www.tableau.com/
https://repositorio.ufscar.br/handle/ufscar/11892

	BitMatrix: A Multipurpose Sketch for Monitoring of Multi-tenant Networks
	Abstract
	1 Introduction
	2 Related Work
	3 Design and Implementation of BitMatrix
	3.1 Multi-tenant Segmentation
	3.2 Using Data from Bitmatrix
	3.2.1 How Many Packets are Exchanged Between Tenant_A and Tenant_B?
	3.2.2 What Network Device has the Highest Traffic Load?
	3.2.3 What is the Link with the Highest Throughput? In Addition, What was its Average Throughput?

	3.3 Caveats and Limitations

	4 Evaluation and Results
	4.1 BitMatrix Setup
	4.2 BitMatrix Evaluation Overview
	4.3 BitMatrix Measurement Evaluation
	4.4 Use of ML Algorithms to Predict the Number of Hash Collisions

	5 Conclusion and Future Studies
	Acknowledgements
	References

