
Vol.:(0123456789)

Journal of Network and Systems Management
https://doi.org/10.1007/s10922-020-09556-7

1 3

BitMatrix: A Multipurpose Sketch for Monitoring 
of Multi‑tenant Networks

Regis Francisco Teles Martins1 · Rodolfo da Silva Villaça2   · 
Fábio Luciano Verdi1 

Received: 6 January 2020 / Revised: 21 May 2020 / Accepted: 11 July 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Sketches are probabilistic data structures capable of summarizing and storing net-
work data (packets, bytes, and flows), with a certain degree of accuracy, that have 
become widely popular for network measurement and monitoring. In this paper, we 
propose a new multi-purpose sketch, called BitMatrix, which is capable of work-
ing in multi-tenant networks. Owing to its multi-dimensional architecture, BitMa-
trix can differentiate between bit markings and byte/packet counting from different 
sources in a network. As a multi-purpose sketch, BitMatrix and its algorithms con-
tribute to the literature by providing information regarding the paths traversed by 
each packet and are designed for use in multi-tenant networks. We also designed a 
statistical model to adjust the measurements owing to the probabilistic behavior of 
the sketches. Such a model is able to infer the standard error rate and approximate 
the BitMatrix counters to the real value. The adjusted BitMatrix measurement has 
a Mean Absolute Percentage Error of ± 6.14%. The BitMatrix sketch was imple-
mented using P4 language and a simulator was also developed, that allowed its scal-
ing using real traces from CAIDA in an NSF network topology.
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1  Introduction

Accurate network measurements are of paramount importance for monitoring, man-
agement, capacity planning, and traffic engineering purposes. In addition, cloud 
computing has become very popular; thus, increasing the challenges in measuring 
a complex network infrastructure that supports multiple services and applications. 
Therefore, it is becoming increasingly urgent for an accurate and fine-grained meas-
urement system to operate efficiently when considering its use in a complex infra-
structure with multiple services and tenants[1].

Faced with the need for more effective ways to measure traffic that flows in a net-
work link between network devices, understand its behavior to support traffic engi-
neering decisions, a valuable contribution is made through the utilization of proba-
bilistic data structures (sketches). An accurate measurement of traffic on links and 
between network devices can help network managers better distribute flows into the 
links as a load balancing action and to find bottlenecks in the network devices that 
may cause latency problems in the network. In addition, another interesting question 
that can be answered as a result of network monitoring is “given a packet and net-
work topology (in the past), what was the path taken by this packet in the network?”

Sketches are probabilistic data structures used to store summarized information 
about network traffic. The two primary advantages of using sketches are (i) a lower 
memory usage in network devices (switch or router) when compared to traditional 
network monitoring tools, and (ii) configurable parameters (the size and occupancy 
of BitMatrix and the hashing function itself) that can be used to adjust the accuracy 
of the measurements[2–5].

Traditional traffic measurements, such as Netflow[6] and sFlow[7], have been 
used for reducing the amount of memory to store network packets for analysis. 
However, such solutions suffer with the overhead when copying these packets to the 
management interface, and it is occasionally also necessary to process such packets 
inside the network devices for summarization and forwarding to the management or 
control plane[8–10]. To avoid such an overhead, these tools usually apply sampling-
based techniques, which typically have low accuracy and other weaknesses, such 
as: no support for data streaming algorithms to find the sources and destinations, or 
for the distributed version of the top-k problem, i.e., finding the globally k-most fre-
quent flows, sources, or destinations in the network[11, 12].

There are also numerous measurement solutions for different applications in net-
work monitoring, including heavy hitter detection[5, 13, 14], traffic change detec-
tion[15, 16], a flow size distribution estimation[17, 18], global iceberg detection[19], 
fine-grained delay measurements[20], an estimation of the flow-size distribution of 
traffic streams[18, 21], and an identification of anomalies in the network[15, 16, 22]. 
Differing from traditional measurement tools based on sampling, the use of sketches 
for traffic monitoring implies a trade-off between the amount of memory used to 
store data and required accuracy of the measurements.

Sketches offer a measurement technique that is suitable for application with-
out sampling, processing every packet in the network, and achieving low memory 
usage and processing[23] with adjustable accuracy according to the sketch design[5, 
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16, 23–26]. Fast packet-processing technologies can be used to implement these 
sketches in the data plane, such as eBPF, XDP[27], and FPGA[28]. SmartNICs are 
network interface cards that are capable of having their functionality modified dur-
ing runtime, thereby implementing different modes of operation. They can also be 
used to speed-up packet processing and enable the use of sketches.

Considering this scenario, many sketch-based solutions have begun to emerge on 
the market. In most cases, the sketches are used only for the marking of bits or bytes 
in a register, with all processing being accomplished by moving a few bytes to the 
management plane. In these cases, sketches have a lower overhead in the packet pro-
cessing pipeline of the network devices and lower memory usage when compared to 
a traditional approach based on NetFlow and sFlow[29].

As an evolution of software defined networking (SDN), a Programming Protocol-
Independent Packet Processor (P4) was presented as a high-level programming lan-
guage for packet forwarding devices[30]. P4 allows the creation of several mecha-
nisms for traffic measurement[31, 32], which include the implementation of sketches 
in programmable devices.

In this context, in this study, a new probabilistic structure called BitMatrix is 
designed and implemented based on the well-known bitmap and counter-array 
sketches, going further than the traditional monitoring process of counting packets 
and bytes. BitMatrix was created to support the multi-tenant monitoring capability, 
in addition to other features normally supported by this type of structure. To support 
multi-tenancy, the existent sketch solutions must have multiple instances installed on 
the network devices (at least one per tenant). These devices must also classify flows 
or packets and select the correct sketch to conduct the marking. This task must be 
achieved in each network device because multi-tenant scenarios are not intrinsic to 
such sketches. BitMatrix solves the problem with a single sketch, by generating the 
traffic classification according to the IP source (tenant) and separating such traffic by 
marking the correct position. BitMatrix uses an array of bitmaps combined with a 
storage method that enables the information to be segmented per tenant. In addition 
to the general probabilistic measurement, BitMatrix enables detailed analyses on a 
packet level in the network. In this study, we consider that each tenant has its own IP 
address sub-network, and can be identified by its address.

To achieve fine-grained measurements using sketches, we designed a machine 
learning (ML) model based on historical data to increase the accuracy of the meas-
urements based on sketches. This model is then used in a polynomial regression 
algorithm to adjust the results and minimize the measurement errors caused by hash 
collisions. If a network device has infinite memory space and a perfect hashing func-
tion, this model is not necessary. However, because it is only a theoretical and non-
practical situation, considering the same hashing function in all devices, the lower 
the memory space used for sketch instantiating, the greater the collision probability 
in the sketches and the lower the measurement accuracy. Under these real scenarios, 
this model is used to increase the measurement accuracy in a restricted memory net-
work device.

BitMatrix was implemented in P4 language and deployed in a Mininet minimalist 
topology to be tested and evaluated. The results of this evaluation were described in 
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a short paper[33], and the implementation is open source.1 As the main difference 
between this study and the previous one[33], we designed and implemented a simu-
lator to evaluate the BitMatrix with real traces from the Center for Applied Internet 
Data Analysis (CAIDA) and extensively analyzed the usage of linear and polyno-
mial regression algorithms in this type of traffic. In summary, the contributions of 
this study are as follows:

–	 We designed a new probabilistic structure called BitMatrix that is capable of col-
lecting the monitoring metrics in a multi-tenant infrastructure;

–	 We implemented BitMatrix using P4 language and made it available as open 
source for the community;

–	 We evaluated BitMatrix using real traffic traces from CAIDA in a NSFNet net-
work;

–	 We designed a model to improve the measurements conducted using BitMatrix 
and minimize errors from hash collisions.

The remainder of this paper is organized as follows: In Sect. 2, some related studies 
are presented to highlight our contribution to the state-of-the-art in network moni-
toring using sketches. In Sect.  3, the design and implementation of the BitMatrix 
is detailed, which is a new sketch to be used for network monitoring. In Sect. 4, an 
evaluation of the BitMatrix is described, and an ML approach is presented for esti-
mating the number of hash collisions and improving the measurement from BitMa-
trix. Finally, in Sect. 5, some concluding remarks and the future scope of studies in 
this area are provided.

2 � Related Work

Network monitoring is used to understand issues or problems within a network 
environment. To understand, prevent, and resolve certain issues, there are numer-
ous methods available for traffic monitoring. Studies on the monitoring of network 
traffic have evolved owing to an increase in traffic over the years. By monitoring, 
we can extract the relevant information for network management tasks such as 
attacks and anomaly detection[14, 34], forensic analysis[35], and traffic engineer-
ing[36–38]. Metrics at different levels are required for each management task, such 
as the flow size distribution[18], heavy hitters[36, 39], or detection of changes in 
traffic patterns[40, 16].

At a high level, there are two classes of techniques for obtaining performance 
metrics. The first is a traffic measurement using counters. The most widely used 
monitoring protocol for this purpose is the Simple Network Management Proto-
col, which collects real-time performance indicator values and with this avail-
able information maintains an in-memory database for queries; furthermore, 
it can send alarms when an indicator threshold is reached. The second class 

1  https​://githu​b.com/regis​ftm/bitma​trix.

https://github.com/regisftm/bitmatrix.
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of techniques involves two approaches to estimate the traffic metrics. The first 
approach is based on generic flow monitoring, typically using a protocol to col-
lect traffic samples to estimate these metrics. The most popular protocols are Net-
Flow[6] and sFlow[41]. Although generic flow monitoring is generally sufficient 
to monitor traffic, previous studies have shown their low accuracy in generating 
more fine-grained monitoring metrics[17, 42, 43]. These limitations have led to 
an alternative sketching approach, where real-time algorithms and probabilistic 
data structures are designed to generate specific metrics[5, 15, 42–45].

Although studies on sketching and data streaming have made a significant con-
tribution, in the long run, it remains impossible to sustain the continued creation 
of dedicated algorithms. The need to support new metrics demands the develop-
ment of new algorithms, as well as the hardware and languages that support them. 
Tools such as OpenSketch[5] and SCREAM[3] provide libraries that reduce the 
implementation required and provide efficient resource allocation. In addition, 
because sketches are implemented on demand according to the set of metrics that 
require monitoring, blind spots are created for the metrics not monitored.

Most studies in this area have not addressed the fundamental problem of need-
ing to create new sketches for each task. For example, UnivMon[46] was recently 
presented as a proposal for a framework that reconciles the generality and high 
fidelity for a broad spectrum of monitoring tasks, and FlexSketchMon[47] was 
introduced as a novel data plane architecture for collecting traffic flow statistics, 
providing a flow aggregation for monitoring applications. In this context, BitMa-
trix is a lightweight sketch that is able to answer some questions at the control 
plane. However, it was not designed for universal monitoring (as UnivMon) or 
flexible monitoring (as FlexSketchMon). The most valuable questions that can be 
answered with BitMatrix, which represent its main contributions to the current 
state-of-the-art approaches, are (i) given a packet (or a flow), what is the path 
traveled through the network during a specific time frame, and (ii) given only 
one sketch (BitMatrix), is it possible to obtain measurement statistics for different 
tenants in a multi-tenant network? We are not claiming that these questions can-
not be answered using UnivMon/FlexSketchMon, but are simply convinced that 
it is not trivial (plug‘n’play) to do so without modifications to their implementa-
tions and streaming algorithms.

From the environment perspective, monitoring sketches can be implemented 
in SDNs[48, 49], as well as through the use of a packet-oriented language such 
as P4[30]. In addition to BitMatrix, there are some other implementations of net-
work monitoring tools in P4, some using sketches[46, 48] and others not[31, 50, 
51].

In Table  1, a summary of the related studies on network monitoring using 
sketches is shown. As shown in this table, there are few implementations of 
sketches in P4. None of the above studies are related to the capability of multi-
tenant segmentation, and no correction mechanisms have been proposed to adjust 
the numbers collected by the sketches to the real number of packets processed in 
the data plane. This adjustment is of paramount importance for management tasks 
that require more accurate measurements.
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3 � Design and Implementation of BitMatrix

As mentioned earlier, BitMatrix is composed of two common sketches: bitmaps and 
counter arrays. A bitmap is a sequence of n bits with a fixed length, as shown in 
Definition 1. Thus, each bit position will create an index for the bitmap, making 
it possible to refer to a specific position by using this index. The bitmap is used to 
mark a fingerprint of each packet processed in each network device. To determine 
which index position a packet should occupy, we hash some fields from the header 
of each packet.

The packet fields, used as input for the hashing algorithm, must be able to represent 
the packet uniquely and may not change across the hops during the forwarding pro-
cess. The hash will be calculated using the invariant portion of the packet and the 
first 8 bytes of the payload, namely, TCP, UDP, or another subsequent layer, if pre-
sent. IP fields that can be modified during the packet forwarding across the network 
are not used as an input because this would result in a different index for the same 
packet along its path in each network device. For the same hashing function, the 
lower the size of the bitmap in bits (n), the lower the measurements accuracy owing 
to the increase in the probability of hashing collisions. Because bitmaps are proba-
bilistic data structures that can only be used for distinct counting, there are no false 
positives. A false positive is a relevant metric for sketches used in a set membership 
problem, such as a Bloom Filter[28], and none of our intended uses for BitMatrix 
requires such an answer.

According to Snoeren[52], the first 28 invariant bytes of a packet are sufficient 
to differentiate almost all non-identical packets in a network. With each packet rep-
resented by an index created by hashing these fields, the bitmap was used to store 

(1)bitmap = {bit_1, bit_2, bit_3,… , bit_n}

Table 1   A summary of related studies on network monitoring using sketches

Work Goals Implementation and evaluation

Lossy data structure[18] Traffic engineering Trace analyses
Reversible sketches[16] Traffic pattern detection Trace analyses
FlexSample[43] Anomaly detection, traffic monitor-

ing
Trace analyses

Sketch-based change detection[15] Anomaly detection Trace analyses
OpenSketch[5] Anomaly detection, traffic monitor-

ing
NetFPGA, trace analyses

Scream[3] Traffic engineering Trace analyses
UnivMon[46] Flow monitoring P4, trace analyses
SketchVisor[48] Top-k algorithm Open vSwitch (OvS)
FlexSketchMon[47] Flow monitoring, traffic monitor-

ing
NetFPGA

BitMatrix Flow monitoring, traffic monitor-
ing, path detection, designed for 
multi-tenant monitoring

P4, trace analyses
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fingerprints of the packets by setting to 1 (one) the bit corresponding to its index. 
Initially, the bitmap has all positions set to zero, and for each packet processed, one 
position, defined by the hashing of each packet, is set to 1. In this way, every time 
a packet is processed, it will generate a hash number and will change the value of 
the bit in the position corresponding to its index to 1. Because bitmap has fewer 
positions than the hashing values, a modulo function needs to be used to adjust the 
corresponding index. Modern technologies for fast packet-processing can be used to 
implement such sketches directly in the data plane, including eBPF and XDP[27], 
FPGA[28], and Netronome SmartNICs[53]. It is important to reinforce that only 
hashing and marking operations are implemented in the data plane, and all process-
ing operations are made in the control plane.

Algorithm  1 demonstrates the procedure used to process a packet, generate a 
hash, and determine the corresponding position for that packet in the bitmap vector. 

Furthermore, a counter array sketch is used to store the total length of each packet 
processed by the network device. A counter array is a sequence of n counters with a 
fixed length, as shown in Definition 2. It will use the same hash value calculated for 
the bitmap as the index for the counter array. In this way, it is possible to recover the 
corresponding size (total length) of each packet by using the index from the bitmap 
sketch.

3.1 � Multi‑tenant Segmentation

The use of a bitmap is limited to indistinctly marking the positions for the packets 
(one bit), however, and because a bitmap is composed of a single vector of bits, a 
segmentation is not allowed. In a multi-tenant environment, it may be desirable to 
use one bitmap to count the packet traces for each tenant. Instead of using several 
vectors individually, we propose the use of a bitmap matrix, which we call BitMa-
trix. BitMatrix is a set of m bitmaps of size n, where m is the number of tenants 
and n is the size of the bitmap. In this context, BitMatrix will occupy m × n bits of 

(2)counter − array = {counter_1, counter_2,… , counter_n}
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memory in the network device. Actually, bitmaps can be created with any number 
of positions. Unfortunately, owing to the actual limitations of the P4 architecture, 
to modify this number it is necessary to rewrite the source code and recompile and 
embed it into the network device. Figure 1 shows the Bitmatrix structure, which is 
also represented in Eq. 3. Because bitmaps will be allocated in the memory of the 
network device, a power of 2 was selected to count the number of positions in Bit-
Matrix and achieve an easier memory allocation and management.

The main benefit of this method is the ability to segment the packet counting 
using a single probabilistic structure. This segmentation can occur in different ways, 
such as per sub-network, per network or transport protocol, or per application port. 
In this paper, in a multi-tenant network scenario, BitMatrix uses a per tenant seg-
mentation approach, where every packet originated by a specific tenant, identified by 
the packet source IP address, will be marked in the same bitmap in BitMatrix. The 
number of bitmaps in BitMatrix will increase linearly according to the number of 
tenants being monitored in the network, and will determine how many bits BitMa-
trix will use in each position.

As an example, considering a case in which BitMatrix is used to monitor traf-
fic of four tenants, consequently, it has 4 bits (one for each tenant). The first bit is 
for bitmap_1, second bit is for bitmap_2, third bit is for bitmap_3, and the fourth 
bit is for bitmap_4. Still, in this example, each line of BitMatrix has a single value 
that can vary from 0 to 15 ( 2m − 1 , where m is the number of tenants): if there are 
no packet traces hashed in that position in any of the bitmaps, the value will be 0 
( 00002 ); if all bitmaps have packets hashed in the same position, the value will be 15 
( 11112 ). As a consequence of this design, BitMatrix grows linearly according to the 
number of tenants, i.e., if the monitored infrastructure has m tenants, our BitMatrix 
will have m bitmaps stored in it.

Thus, for the marking procedure, it is insufficient to determine the position of 
the packet (its index in a bitmap) in BitMatrix. It is also necessary to determine 

(3)BitMatrix = {bitmap_1, bitmap_2, bitmap_3,… , bitmap_m}

Fig. 1   BitMatrix represented as 
a set of n bitmaps
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which bitmap should be used to hash the fingerprint (a bit) of this packet. We 
populate the bitmaps by mapping the IP addresses to binary numbers depend-
ing on the quantity of the tenants. In the example mentioned above, with four 
tenants (e.g., IP A, IP B, IP C, and IP D), we mapped IP address A to bitmap_1 
with a value of 0001, IP address B to bitmap_2 with a value of 0010, IP address 
C to bitmap_3 with a value of 0100, and IP address D to bitmap_4 with a value 
of 1000. This mapping is conducted manually in the control plane and is then 
loaded by Algorithm 2, as shown in line 3. The IP source address of every packet 
entering in the switch is stored in the pkt variable (line 4 in Algorithm 2) and 
then compared with the bitmap vectors containing all IP addresses of the tenants 
previously mapped (lines 12–17). Algorithm 2 shows a simplified version of the 
procedure for finding and marking the correct bitmap in BitMatrix.

These values are written in the BitMatrix position by using a logical disjunc-
tion operator OR (line 22 in Algorithm 2), avoiding any loss of packets previ-
ously marked in the other bitmaps (tenants). To summarize, to map a packet 
to a bitmap in BitMatrix we use a combination of Algorithm  1 (to determine 
the position in the bitmap) and Algorithm 2 (to determine in which bitmap the 
packet will be mapped). 

Using this algorithm, it is possible to segment the packets stored in BitMa-
trix by creating a process to distinguish between different tenants. By doing so, 
our solution can identify which tenant originated the stored fingerprints of the 
packets.
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3.2 � Using Data from Bitmatrix

The data stored in BitMatrix is of paramount importance for network monitoring 
and provide a powerful tool to obtain interesting information from the network to be 
used by applications in the control plane. Some examples of information that can be 
extracted from Bitmatrix are as follows:

–	 The number of unique packets crossing the network;
–	 Their origin and destination;
–	 The network devices responsible for routing such packets;
–	 The heavy-hitters and which tenant they belong to.

BitMatrix, allied with the network topology information, is sufficient to conduct the 
proposed monitoring and a further analysis. Given an identical BitMatrix on every 
device in the network, it is possible to have the same packet fingerprint marked pre-
cisely at the same position of BitMatrix installed on each device responsible for for-
warding such packets.

Within a fixed time period, the control plane should collect BitMatrix with all 
hashed data stored on it from all network devices. To retrieve BitMatrix, a command 
line interface (CLI), available in the Behavioral Model version 2 (BMv2) software 
switch is used. In our testbed, the CLI is connected to the Thrift RPC server running in 
each emulated network device.

Once the control plane has collected the data, several analyses can be conducted. 
The number of packets processed in a specific device, per tenant and in total, can be 
estimated by analyzing the information from BitMatrix by summing the bits equal to 1, 
which represent packet fingerprints stored in BitMatrix. The number of packets counted 
in BitMatrix will always be less than the number of packets processed by the device, 
given the probability of a hash collision occurring, as discussed later in Sect. 3.3.

To estimate the number of packets for a specific tenant, it is necessary to select the 
corresponding bitmap in BitMatrix, and then conduct the calculation. The total num-
ber of packets processed by a specific network device can be estimated by counting 
the number of bits marked in the entire BitMatrix. Assuming that all packets from 
Tenant_A are marked in bitmap_1, Eq. 4 represents the total number of packets sent 
from Tenant_A, where n is the size of the bitmap for Tenant_A.

Equation 5 expresses the total number of packets processed by the network device 
from where BitMatrix was collected. Here, m is the number of tenants in the net-
work, and n is the size of the bitmap for each tenant.

(4)Total number of packets from Tenant_A =

n
∑

i=1

bitmap_1[i]

(5)Total number of packets from all tenants =

m
∑

j=1

n
∑

i=1

BitMatrix[j][i]
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To obtain the number of unique packets processed in the network, per tenant and 
in total, a logical disjunction operator (OR) can be used in the bitmaps related to 
each tenant, collected from BitMatrices across the network devices during the same 
time period. The logical operator OR will avoid counting the same packet more than 
once. Equation 6 shows the sum of the bits resulting from the logical disjunction of 
all bitmaps correspondent to Tenant_A, collected from all BitMatrices in the net-
work. Here, n is the size of the bitmap. The total number of unique packets pro-
cessed in the network can be obtained by summing the total number of unique pack-
ets of all tenants.

Because each bitmap in BitMatrix corresponds to a different tenant, the source of a 
packet can be determined according to the corresponding bitmap in which the packet 
fingerprint is marked. The destination can be estimated by analyzing which network 
devices have stored the packet fingerprint at the same position in BitMatrix. To do 
so, the network topology knowledge becomes necessary. Given such information, it 
is possible to create a traffic matrix between tenants and the network devices. As an 
example, consider the network from Fig. 2. In this context, based on the collected 

(6)Total number of unique packets of Tenant_A =

n
∑

i=1

BitMatrix[A][i]

Fig. 2   Network proposed to illustrate the task of analyzing the BitMatrix data
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BitMatrix from all network devices, given a fixed and known time period, it is pos-
sible to answer the following questions:2

–	 How many packets were exchanged between Tenant_A and Tenant_B?
–	 What was the network device with the highest load?
–	 What link had the higher throughput? In addition, what was its average through-

put?

3.2.1 � How Many Packets are Exchanged Between Tenant_A and Tenant_B?

To answer this question, two different analyses must be conducted. The first aims 
to identify the packets sent from Tenant_A to Tenant_B, and the second aims to 
identify packets sent from Tenant_B to Tenant_A. To identify packets sent from 
Tenant_A to Tenant_B, once knowing the network topology and assuming the short-
est path between them, we can infer that these packets are the sum of the bits in 
the corresponding bitmaps of BitMatrix from devices 1 and 2 but are not present in 
devices 3 and 4. Equation 7 shows this logical operation. In this equation, bitmapx,y 
represents the bitmap of tenant x in the device y, and n is the size of the bitmap (in 
bits). As an example, bitmapA,1 in Eq. 7 means the bitmap of Tenant_A in Router 1.

Second, we use the same algorithm to estimate the number of packets sent from 
Tenant_B to Tenant_A using the bitmaps associated with Tenant_B. Equation  8 
shows these logical operations.

Finally, to answer the question, we need to determine the total number of packets 
that flow between Tenant_A and Tenant_B. In this case, we need to sum the results 
from Eqs. 7 and 8. Equation 9 shows the final result and the answer to the above 
question.

3.2.2 � What Network Device has the Highest Traffic Load?

It is possible to estimate the network device with the highest traffic load by estimat-
ing the number of packets processed for each during the observation time. To obtain 

(7)

Total A → B =

n
∑

i=1

{bitmapA,1[i] ∧ bitmapA,2[i] ∧ ¬bitmapA,3[i] ∧ ¬bitmapA,4[i]}

(8)

Total B → A =

n
∑

i=1

{bitmapB,1[i] ∧ bitmapB,2[i] ∧ ¬bitmapB,3[i] ∧ ¬bitmapB,4[i]}

(9)Total A ↔ B = (Total A → B) + (Total B → A)

2  Equations 7, 8, 9, 10, and 11 are expressed based on the topology shown in Fig. 2 for sake of the read-
ers. However, they can be generalized to any tenant, device, or link.
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this estimation, it is necessary to sum the bits of all bitmaps in the BitMatrix of all 
routers/switches in the network. Equation 10 demonstrates how to estimate the total 
number of packets for a specific device (Dev_1). In this equation, m is the number of 
tenants and n is the size of the bitmap in BitMatrix.

The same procedure is used to estimate the total number of packets of all other 
devices in the network. Once calculated, we can sort them by the total number of 
packets, determining which was the network device with the highest load in the net-
work during the observation time period.

3.2.3 � What is the Link with the Highest Throughput? In Addition, What was its 
Average Throughput?

To determine which link had the highest throughput, we need to identify the packet 
fingerprints present in the BitMatrices of a pair of connected devices during the 
same time period. In other words, all packets present in the BitMatrices of both 
Dev_1 and Dev_2 may have used the link r (Fig.  2) to travel from one device to 
another. It is possible to determine the packet fingerprints that are present in both 
devices by using a logical conjunction operation (AND) between the two BitMatri-
ces. Thus, to find the total number of packets that crossed this link, we need to sum 
the bits of BitMatrix generated by the AND operation. Equation 11 shows the opera-
tion used to find the total number of packets that crossed the link r. In the equation, 
BitMatrix1 is the BitMatrix of Dev_1 and BitMatrix2 is the BitMatrix of Dev_2, 
where m is the number of tenants and n is the size of the bitmap of both BitMatrices.

Although it is possible to go from Dev_1 to Dev_2 through links t, u, and s due to an 
abnormal situation, e.g., a link failure, this will not happen. In this example, we do 
not considered such a possibility, although the same logical conjunction operation in 
the BitMatrices of Dev_1, Dev_2, Dev_3, and Dev_4 (all devices in this alternative 
path) may be used to sum the bits of the resulting BitMatrix. This sum is an estimate 
of the number of packets traveling from Dev_1 to Dev_2 by using the links t, u, and 
s.

To estimate the average throughput of each link, the counter array sketch must 
be used. As discussed before, once the network device hashes the fingerprint of the 
packets (a bit) in BitMatrix, it uses the same index to store the total length of the 
packet in the correspondent counter array. Both counter arrays of Dev_1 and Dev_2 
store the packet length of each packet that passes through link r. To estimate the 
total amount of bytes crossing this link, it is possible to use the resulting BitMatrix 
of the logical conjunction operation to find what positions to read and what values 

(10)Total number of packets in Dev_1 =

m
∑

j=1

n
∑

i=1

BitMatrix[j][i]

(11)

Total number of packets between Dev_1 and Dev_2

=

m
∑

j=1

n
∑

i=1

{BitMatrix1[j][i] ∧ BitMatrix2[j][i]}
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to sum in the counter array. Finally, given the total packet length from the counter 
array, it is possible to calculate the average throughput by dividing the total amount 
of bytes by the time frame of the observation.

3.3 � Caveats and Limitations

Even using the invariant bytes of a packet for a hash calculation, it is possible that 
the hashing of two different packets will result in the same value. This occurrence is 
called a hash collision and creates a gap between the number of packets actually for-
warded by the network device and total number of positions marked (equal to ‘1’) in 
the bitmap. There are three main factors that can cause a variation in the number of 
hash collisions in the proposed scenario: (a) the size of the bitmap, or in other words 
the number of positions available in the vector, (b) the occupation of the bitmap 
when marking a new position, and (c) the type of hash function used to generate the 
hash value.

The size of the bitmap and size of the hash value are related in the sense that 
there is no point in setting a bitmap with more positions than a hash value. Positions 
beyond the maximum hash value will never be used. Nevertheless, setting a bit-
map smaller than the maximum hash value will demand a modulo operation, using 
the bitmap size and the resulting hash value to determine the offset for the present 
packet. Finally, we need to consider the bitmap occupancy. The more occupied a bit-
map is, the greater the chances of a hash collision. In Sect. 4.3, we detail the mecha-
nism designed to adjust the hash collision.

The overhead related to the usage of Bitmatrix may be the focus of future analy-
sis. We can state that the main overhead will come from the hash algorithm used to 
determine the position in BitMatrix. In this context, there are other studies that have 
conducted extensive analyses related to the performance of P4 hashing algorithms 
in both software and hardware. We point the readers to[46, 54] and the references 
therein as example studies to achieve a better comprehension regarding the overhead 
of the probabilistic structures.

4 � Evaluation and Results

As stated before, the P4 implementation of BitMatrix and its respective evalu-
ation were presented in our previous study[33]. This paper presents a simulator 
whose purpose is to scale up the previous results by simulating network devices 
with a BitMatrix sketch in a real-world network topology with traffic traces 
from the passive equinix-sanjose CAIDA3 dataset. The simulator is designed in 
Python and receives the packet traces as input, as well as the network topology 
and the data collected from BitMatrix. The output generated by the simulator is 
a set of CSV files imported into Tableau Software[55], where all the analyses are 

3  http://www.caida​.org/data/passi​ve/passi​ve_2012_datas​et.xml.

http://www.caida.org/data/passive/passive_2012_dataset.xml
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conducted. We used a computer with an i9 9900k CPU and 64 GB of RAM for 
running the simulator.

To create a more realistic model for the tests, a network topology based on 
NSFNet’92 was used, as shown in Fig. 3.

The NSFNet’92 network topology is represented as a graph for the simulation, 
as shown in Fig. 4. The NSFNet’92 sites become tenants, numbered from 1 to 16. 
Routers and links are also numbered, having a total of 12 routers and 31 links 
interconnecting the tenants and routers. This network topology was taken as ref-
erence in an evaluation of BitMatrix presented herein.

Fig. 3   NSFNet’92 network used in the evaluation of the BitMatrix sketch

Fig. 4   Network topology showing tenants, routers, and links
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In addition, a routing table was installed in the routers to specify the path that a 
packet needs to travel across the network to go from a source to a destination. The 
same path is used for the upstream and downstream traffic. In this table, the shortest 
path was used for all situations.

A different dataset and a different topology were not used because they are not 
considered as variables in our proposal. The hash is calculated using the invariant 
portion of the packet and the first 8 bytes of the payload. Using another dataset or 
topology, when considering the same methodology to assign an ingress and egress 
point in the network, the measured values will change; however, neither the algo-
rithm used to estimate the route followed by each packet nor the ML algorithm 
applied to improve the accuracy of the measurements will be altered.

4.1 � BitMatrix Setup

Once the network topology is selected and the routing table is configured, the next 
step is to distribute packets from the trace to the tenants. source The IP addresses of 
the packets were distributed in 16 groups of networks (one group per tenant) in such 
a way that each group has a similar number of packets to balance the traffic between 
routers. Table 2 shows the network prefixes assigned to each tenant. Packets with a 

Table 2   Tenants and their assigned group of network prefixes

Tenant Network prefixes assigned to the tenants

Tenant_1 180.0.0.0/8, 128.0.0.0/8
Tenant_2 223.0.0.0/8, 208.0.0.0/8, 55.0.0.0/8, 108.0.0.0/8
Tenant_3 48.1.159.0/24, 151.0.0.0/8, 48.0.0.0/8
Tenant_4 145.0.0.0/8, 158.0.0.0/8, 54.0.0.0/8
Tenant_5 61.0.0.0/8, 184.0.0.0/8, 181.0.0.0/8, 203.0.0.0/8
Tenant_6 48.1.136.0/24, 132.0.0.0/8, 177.0.0.0/8, 186.0.0.0/8, 197.0.0.0/8
Tenant_7 48.1.137.0/24, 83.0.0.0/8, 34.0.0.0/8, 141.0.0.0/8, 116.0.0.0/8
Tenant_8 48.2.0.0/8, 155.0.0.0/8, 49.0.0.0/8, 187.0.0.0/8, 37.0.0.0/8
Tenant_9 135.0.0.0/8, 144.0.0.0/8, 60.0.0.0/8, 220.0.0.0/8, 236.0.0.0/8, 118.0.0.0/8, 113.0.0.0/8
Tenant_10 41.0.0.0/8, 142.0.0.0/8, 147.0.0.0/8, 247.0.0.0/8, 50.0.0.0/8, 32.0.0.0/8, 125.0.0.0/8
Tenant_11 178.0.0.0/8, 70.0.0.0/8, 221.0.0.0/8, 148.0.0.0/8, 248.0.0.0/8, 219.0.0.0/8, 152.0.0.0/8, 

138.0.0.0/8, 115.0.0.0/8
Tenant_12 53.0.0.0/8, 150.0.0.0/8, 48.1.156.0/24, 201.0.0.0/8, 42.0.0.0/8, 228.0.0.0/8, 68.0.0.0/8, 

104.0.0.0/8, 35.0.0.0/8, 85.0.0.0/8
Tenant_13 39.0.0.0/8, 159.0.0.0/8, 183.0.0.0/8, 36.0.0.0/8, 33.0.0.0/8, 112.0.0.0/8, 182.0.0.0/8, 

242.0.0.0/8
Tenant_14 143.0.0.0/8, 218.0.0.0/8, 79.0.0.0/8, 78.0.0.0/8, 77.0.0.0/8, 253.0.0.0/8, 254.0.0.0/8, 

163.0.0.0/8, 98.0.0.0/8, 109.0.0.0/8, 105.0.0.0/8
Tenant_15 176.0.0.0/8, 40.0.0.0/8, 140.0.0.0/8, 190.0.0.0/8, 149.0.0.0/8, 43.0.0.0/8, 146.0.0.0/8, 

231.0.0.0/8, 174.0.0.0/8, 48.1.226.0/24, 80.0.0.0/8, 84.0.0.0/8, 134.0.0.0/8, 
131.0.0.0/8, 210.0.0.0/8

Tenant_16 0.0.0.0/0
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source IP address not belonging to any of the prefixes assigned from Tenant_1 to 
Tenant_15 were assigned to Tenant_16, which is a type of “catch-all” tenant.

To determine how many packets should be processed before collecting the sta-
tistics and resetting the counters, it is necessary to configure the simulator. Once 
the bandwidth of the links was arbitrarily defined as 100 Mbps, the question of how 
many packets per second per tenant does the simulator need to process the respec-
tive the bandwidth of the links was derived. The monitoring time frame for Bit-
Matrix was configured as 10 s, and the total simulation time was set to 30 min. To 
calibrate the simulation and answer the previous question, an empirical evaluation of 
the maximum rate of pps for each tenant was conducted, and Fig. 5 shows the result. 
On average, the simulator processed a batch of 430,000 packets every 10 s resulting 
in a rate of 43,000 pps. With this number of packets processed, we can maintain the 
simulated traffic under a pre-determined link capacity of 100 Mbps.

The next configuration step is related to adjusting the BitMatrix parameters on 
each router: its length (in bits) and the epoch (monitoring time frame). According 
to the previous evaluation, the epoch was set to 10 s, or 430,000 packets for all ten-
ants. Based on this evaluation, the length of the bitmaps of the BitMatrix was set to 
65,536 bits, thus, the total size of each Bitmatrix in each device is 16 × 65,536 bits 
(131 KB), which is quite acceptable considering the size of the memory used in cur-
rent physical forwarding devices. This size was chosen to maintain a low level of 
occupancy of each BitMatrix as well as to avoid a high number of hash collisions.

It is important to note here that m, i.e., the number of tenants in the network, does 
not have an effect on the results, and will only influence the amount of memory used 

Fig. 5   Average throughput per link. The monitoring time frame is set to 10 s
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by BitMatrix because a bitmap exists for each tenant. In summary, m affects only 
the total size of Bitmatrix. Regarding n, i.e., the size of the bitmaps in BitMatrix, it 
will have an influence on the hashing collision rate because the lower the size of the 
bitmap, the greater the probability of having a hashing collision to mark the packets 
into the bitmap. Increasing the collision rate will increase the error in our counting 
estimation and reduce the accuracy of our measurements. We conducted an evalua-
tion on the occupation versus collision rate in two previous studies[33, 56].

In both[33, 56] an evaluation of the relation between three variables was con-
ducted, namely, the size of the bitmap, its occupation, and the throughput of the 
monitored network. These three variables are tied to the collision rate of the hashing 
function as follows: the smaller the size of the bitmap, the greater the probability of 
having collisions marking the packets in the bitmap; the greater the occupancy of 
the bitmap, the greater the chance of collisions occurring; and finally, the greater the 
throughput of the network, the faster the occupancy of the bitmap. It is possible to 
control the size of the bitmap and the desired occupancy for any monitoring system 
based on sketches, despite the throughput of the network being beyond the control 
of the network manager, as it follows different loading along the time. For this rea-
son, it is not possible to generate a fixed equation that points to the best configura-
tion n for a specific network. The network manager must maintain these variables 
and continuously monitor the accuracy of the measurements and modify its BitMa-
trix configuration.

4.2 � BitMatrix Evaluation Overview

To analyze the statistics generated by the BitMatrices on each router, we used Tab-
leau software. The information extracted from BitMatrix using CLI and the Thrift 
RPC server available in each software switch was compared to the real information 

Fig. 6   Average throughput per router, in pps. The monitoring time frame is set to 10 s
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obtained from packets and byte counters in the simulator. This comparison is pre-
sented in Sect. 4.3. The simulator processed a total of 77,400,000 packets from the 
trace. Figure 6 shows the average pps rate per router during the 30 min simulation.

Analyzing Fig. 6, the router with a higher pps rate is Router_12. To observe the 
traffic in Router_12, the details of the traffic in this router, broken down by tenant, 
are shown in Fig. 7.

From Fig. 7, it is possible to identify that tenants 3, 15, and 16 are the heavy hit-
ters of router_12, i.e., the tenants that send/receive more traffic (measured in pps) to/

Fig. 7   Average throughput per tenant on Router_12, in pps. The monitoring time frame is set to 10  s

Fig. 8   Average throughput per tenant (all routers), in pps. The monitoring time frame is set to 10 s
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from router_12. router_12 is one of two possible paths to all other tenants used to 
reach tenants 15 and 16, and thus a higher pps in this router is observed (see Fig. 4). 
Tenant 3 was identified as a heavy hitter, and thus it also has a high pps.

As an assumption when exemplifying the power of BitMatrix, it is possible to see 
from Fig. 4 that both tenants 15 and 16 are directly connected to router_12, and thus 
the unexpected traffic load is to/from tenant_3. Let us analyze the traffic per tenant 
in the network to better understand the traffic profile of each tenant. Figure 8 shows 
the total traffic, per tenant, in the network.

From Fig. 8, it can be seen that the higher traffic in the network is to/from ten-
ant_3, which can be identified as the biggest offender in the network. Figure 9 pre-
sents a dashboard with a complete view representing the total traffic contribution, 
per tenant, on each router. For an efficient visualization, the percentage is only pre-
sented for the tenant with the highest contribution.

Several other analyses can be applied. Using the simulator, it was possible 
to obtain insight and better understand the power when using the packet digested 
(sketch) information from BitMatrix. It is important to highlight that, because the 
information is collected every 10 s during this evaluation, a near real-time perspec-
tive regarding the network behavior and performance analysis is offered to the net-
work administrator.

However, because BitMatrix has a probabilistic data structure, hash collisions 
may introduce errors in the measurements conducted when using the data collected 
from the sketches. In the next section (Sect.  4.3), we explore statistics regarding 

Fig. 9   Dashboard showing the traffic contribution of each tenant per router
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collisions and the bitmap occupation, and propose a model based on a polynomial 
regression to adjust the results compensating the measurement errors from hash 
collisions.

4.3 � BitMatrix Measurement Evaluation

The simulator generates one BitMatrix containing 16 bitmaps and 16 counter 
arrays (one per tenant), per router, at every 10 s or for every 430,000 packets 

Fig. 10   Number of packets measured by BitMatrix and the packet counter for router_2 and tenant_11. 
The monitoring time frame is set to 10 s

Fig. 11   Number of packets measured by BitMatrix and the packet counter for router_1 and tenant_1. The 
monitoring time frame is set to 10  s
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processed on average. In total, after processing the packets to simulate 30 min of 
traffic, it creates approximately 34,500 bitmaps and counter arrays. In addition 
to generating BitMatrices, the simulator was also used to create real packets and 
byte counters to evaluate the quality of the information provided by BitMatrix. 
When comparing the measurements from the bitmaps and these real counters, a 
gap between the two can be seen.

Figures 10, 11, and 12 show the difference between the measurements based 
on BitMatrix and the packet/byte counter implemented in the simulator. The 

Fig. 12   Number of packets measured by BitMatrix and the packet counter for router_3 and tenant_3. The 
monitoring time frame is set to 10 s

Fig. 13   Percentage of bitmap occupation versus the percentage of collisions, per bitmap
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packet counter reports the real number of packets/bytes processed, and BitMatrix 
estimates its number by using data from the sketches.

From these figures, it can be seen that the measurement error of BitMa-
trix increases as more packets are processed. The difference shown in Fig.  11 
is greater than that in Fig.  10; in addition, the difference in Fig.  12 is greater 
than that in Fig. 11. This occurs as a result of the increase in the hash collisions 
as more packets are processed, and because the size of BitMatrix is the same in 
all routers. Thus, the chances of a collision increase as BitMatrix becomes more 
occupied.

Aiming to find an algorithm based on the historical data to apply an adjust-
ment to the BitMatrix measurements, approximating it to real values, the relation 
between the BitMatrix occupation and the percentage of hash collisions was used 
to train and test the ML model. Figure 13 shows the relation between these two 
measurements.

To estimate the occupation of BitMatrix and the percentage of hash collisions, 
the size of the bitmap in BitMatrix was used as a reference in Eqs. 12 and  13, 
respectively. Here, n is the size of the bitmap, in bits. For the sake of simplifica-
tion, in Eq. 12 the index of the tenant is represented as “any,” [], i.e., the bitmaps 
are from the same tenant. As stated in this section, BitMatrix was set to 65,536 
bits and consequently the bitmaps in BitMatrix have the same size. The repre-
sentation shown in Fig. 13 also uses this approach. During the simulation, if the 
simulator counts 2000 collisions when storing the packets for the same tenant in 
BitMatrix, the percentage of collisions will be 2000 divided by 65,536, which 
is  3.051758%.

In a more realistic scenario, it is not desirable to have one more counter in the data 
plane to count the number of hash collisions. Thus, the idea is to use the bitmap 
occupation rate and estimate the number of collisions. This idea was used to create 
an ML model, and using this prediction it is possible to adjust the BitMatrix meas-
urements, which incurs a smaller error and better approximation into the real values.

(12)% of occupation =

(

n
∑

i=1

BitMatrix[][i]

)

∕n

(13)% of collisions = total number of collisions∕n

Table 3   Database partitioning for k-fold cross validation

Partition # Training set Test set

Partition 1 [Index] < 26881 [Index] > 26880
Partition 2 [Index] > 6720 [Index] < 6721
Partition 3 [Index] < 6721 OR [Index] > 13440 [Index] > 6720 AND [Index] < 13441
Partition 4 [Index] < 13441 OR [Index] > 20160 [Index] > 13440 AND [Index] < 20161
Partition 5 [Index] < 20161 OR [Index] > 26880 [Index] > 20160 AND [Index] < 26881
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4.4 � Use of ML Algorithms to Predict the Number of Hash Collisions

To predict the hash collision rate in the network, linear and polynomial regression 
algorithms were evaluated. First, they were trained as a part of an ML technique. 
For the training phase, a bitmap database with 33,600 samples of hash collisions 
in a real network implemented in P4 was used. This database was divided into 
five partitions of 6720 samples each for the k-fold validation. In the k-fold vali-
dation, we used four partitions for training the algorithm and one partition for 
testing. Each field of the database has its own index, from 1 to 33,600. The index 
field was used for the field selection, as shown in Table 3.

Table  4 shows the results for the k-fold cross-validation process. The mean 
squared error (MSE) is the average for the five partitions, and may help in select-
ing the best polynomial algorithm for application to the prediction problem. The 
lower the error that occurs, the better the result. The table is sorted in ascending 
order, with the best results shown first.

As a result of the training and testing phases, Eq. 14 expresses the number of 
collisions as a function of the occupation (occupation), in percent (%). In this 
same equation, n is the bitmap size in BitMatrix. It is important to highlight that 
Eq.  14 applies to any other traffic dataset as well, the only requirement being that 
with any other ML technique, the algorithm must be retrained allowing new input 
values for the equation to be generated. We can even vary the size of the bitmaps 
(n) to have greater or less accuracy as desired.

Using this result, the adjusted bitmap is used as a more accurate data source for the 
measurements when using BitMatrix. Equation 15 expresses the estimated number 
of packets in the adjusted bitmap as a function of the predicted number of collisions. 
Here, n is the size of the bitmap, in bits.

(14)

number of collisions =n ∗ (0.0600287 ∗ occupation4)

+ (−0.226063 ∗ occupation3) + (0.531893 ∗ occupation2)

+ (0.0019715 ∗ occupation1) + 0.000701056)

Table 4   Average MSE and 
average standard deviation 
(StdDev) for the testing database

Method Average mean 
squared error

Average std. deviation

Polynomial degree 4 1.76E−05 0.039634
Polynomial degree 3 1.84E−05 0.039674
Polynomial degree 2 3.66E−05 0.039381
Linear 4.95E−04 0.034805
Logarithmic 1.30E−03 0.025877
Exponential 5.96E−00 2.466112
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Figures 14, 15, and 16 show three values for comparison: 

(15)

number of packets in the adjusted bitmap

= number of collisions +

n
∑

i=1

bitmap[i]

Fig. 14   Number of packets processed as measured by BitMatrix counter, packet counter, and BitMatrix 
adjusted for router_2 and tenant_11. The monitoring time frame is set to 10 s

Fig. 15   Number of packets processed as measured by BitMatrix counter, packet counter, and BitMatrix 
adjusted for router_1 and tenant_1. The monitoring time frame is set to 10 s
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1.	 BitMatrix counter: This is the result of the counted packets by summarizing the 
number of bits in the original bitmap.

2.	 Packet counter: This is the real number of packets counted by a counter in the 
simulator and is used as a reference.

3.	 BitMatrix adjusted: This is the result of the packets counted by summarizing the 
number of bits in the bitmap, and adjusting this value by using the polynomial 
regression algorithm based on the bitmap occupation. This line (in green) in the 
graph is overlapped by the packet counter line (in orange) and is not well percep-
tible.

The adjusted BitMatrix measurement has a mean absolute percentage error of 
±6.14%. It is also possible to observe that, even under a low or high occupation, the 
performance of the algorithm does not decrease.

5 � Conclusion and Future Studies

Network monitoring is a crucial task for a network operator. Information pro-
vided by the monitoring tools offers intelligence for the decision-making process 
for capacity planning and traffic engineering. The solution proposed in this paper, 
a BitMatrix sketch, goes further than a traditional monitoring process. In addition 
to general statistics, it enables detailed analyses to be segmented per tenant. The 
solution presented in this paper differs from previous solutions in the sense that sev-
eral data analyses can be conducted in the control plane by means of the sketches 
collected through BitMatrix. We found that the counters collected are not useful if 
not properly observed through a proper correlation of data, which must be applied 
in the control plane. This hidden information cannot be obtained by looking at raw 
counters.

Fig. 16   Number of packets processed as measured by BitMatrix counter, packet counter, and BitMatrix 
adjusted for router_3 and tenant_3. The monitoring time frame is set to 10 s
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To process real traffic captured in a simulated network, we used CAIDA traces 
to produce a considerable number of traffic statistics for routers, broken down by a 
tenant. Moreover, another key contribution of this study is that using the generated 
statistics from this simulation, we created an algorithm, using supervised ML, to 
reduce the errors introduced by hash collisions.

The model presented in this paper is a powerful mechanism to minimize the 
measurement errors caused by hash collisions, and may be applied to other scenar-
ios, not only those related to packet counting. In this study, linear and polynomial 
regression algorithms are used; however, other algorithms may be trained and tested 
using the same traces.

The development and evaluation of BitMatrix can be improved in many ways. A 
more user-friendly interface is required for creating rules to generate specific infor-
mation from data stored in BitMatrix. Another task will be to speed up the statistics 
module, using an extract, transform, load tool to retrieve data periodically from Bit-
Matrix, and aggregate the metrics (number of packets and bytes) based on the net-
work device and tenant dimensions. We also believe that the BitMatrix structure is 
a first step toward the segmented monitoring of slices, which has gained significant 
attention in recent studies related to 5G, cloud computing, and IoT verticals.
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