
Using Machine Learning and In-band Network
Telemetry for Service Metrics Estimation

Leandro C. de Almeida1, 2, Rafael Pasquini3, and Fábio L. Verdi1

1Computing Department, Federal University of São Carlos, Sorocaba, SP Brazil
2Academic Unit of Informatics, Federal Institute of Paraı́ba, João Pessoa, PB, Brazil

3Faculty of Computing, Federal University of Uberlândia, Uberlândia, MG, Brazil
leandro.almeida@ifpb.edu.br, rafael.pasquini@ufu.br, verdi@ufscar.br

Abstract—Data plane programmable devices used together with
In-band Network Telemetry (INT) enable the collection of data
regarding networks’ operation at a level of granularity never
achieved before. Based on the fact that Machine Learning (ML)
has been widely adopted in networking, the scenario investigated
in this paper opens up the opportunity to advance the state of the
art by applying such vast amount of data to the management of
networks and the services offered on top of it. This paper feeds ML
algorithms with data piped directly from INT - essentially statistics
associated to buffers at network devices’ interfaces - with the
objective of estimating services’ metrics. The service running on
our testbed is DASH (Dynamic Adaptive Streaming over HTTP)
- the most used protocol for video streaming nowadays - which
brings great challenges to our investigations since it is capable of
automatically adapting the quality of the videos due to oscillations
in networks’ conditions. By using well established load patterns
from the literature - sinusoid, flashcrowd and a mix of both at the
same time - we emulate oscillations in the network, i.e., realistic
dynamics at all buffers in the interfaces, which are captured by
using INT capabilities. While estimating the quality of video being
streamed towards our clients, we observed an NMAE (Normalized
Mean Absolute Error) below 10% when Random Forest is used,
which is better than current related works.

Index Terms—In-band network telemetry, Machine learning,
Service metrics estimation, Data plane programmability.

I. INTRODUCTION

Thanks to recent advances in programmable hardware and
the P4 language [1], network devices can report network status
without intervention of the control plane [2]. In addition, the
INT specification [3] defined a set of new fine-grained metrics
that allows to extract network data at line rate.

This huge amount of network metrics allowed by INT, on
one hand, brings to the network administrator new views of
the network, such as packets’ paths, buffers’ occupancy and
packets’ waiting-time in queues. On the other hand, these data
are very welcome for ML algorithms that are hungry for data.
With this knowledge, ML algorithms can predict the status of
services running in the network, giving the opportunity for new
management actions.

In this context, this work intends to answer the following
research questions: 1) Can INT metadata be used to feed ML
algorithms? 2) Is it possible to obtain a better estimation of
service metrics using INT and ML? If so, how accurate is this
estimation? 3) What is the best ML method to work with INT?

Having these two powerful tools, INT and ML, we want to
analyze if both, when used together, may help in service metrics
estimation. Specifically in this work, we want to estimate the
QoS of DASH service [4], considering that DASH is the
current standard technology used by video companies such
as Netflix® and Google® [5]. DASH offers a video service
with an adaptive rate, in which the client has the possibility
to consume the video in different configurations (resolution,
bitrate and frames per second) according to the load of the
network [6]. In this sense, estimating the metrics of an adaptive
service like DASH is challenging given that network load
conditions typically fluctuate.

We used the most classical ML algorithms to find the best
estimator that fits with INT metadata: Decision Tree (DT),
Random Forest (RF), K-nearest neighbors (KNN) and Neural
Networks (NN). The network load was created through a variety
of different traffic patterns using sinusoid, flashcrowd, and a
mix of both at the same time. The purpose of these loads
is to provide experience to the model to be trained, as they
lead the system from low load to high load. We also created
random microbursts so that the load is a mixture of different
flows that vary in aspects such as size (long and short), type of
applications (web services, management) and duration times.
Results indicate that RF obtained the best figures having an
NMAE below 10%, which is better than other related works
[7]–[9].

Finally, our experiments revealed two important findings: 1)
the queue depth is the feature (network metric) that influences
most in the ML algorithm, and 2) the switch closest to the client
(the host where the DASH client is running) is the one whose
network metrics are more important for the ML algorithms.
The latter result confirms the same finding of a previous work
[7] whose evaluation was done using a combination of metrics
from a computational cluster and OpenFlow networks.

In summary, the main contributions of this work are:

1) Propose and evaluate the joint usage of ML and INT for
DASH service metrics estimation;

2) Analyse different ML algorithms and show which method
obtains better results;

3) Reveal which network metric and which network equip-
ment mostly influence ML algorithms.

This work is organized as follows: in Section II the research
problem is presented. The project decisions for the machine
learning are described in Section III. In Section IV, the evalu-
ation process is described, including a brief view about DASH
video service and the workloads used. The results are presented
in Section V and the related works is discussed in Section VI.
Finally, the conclusions are in Section VII.

II. PROBLEM STATEMENT

In this work, we are initially assuming a datacenter network.
In this sense, the estimation can be useful in the context
of network service providers (ISPs), which could adjust the
infrastructure according to the estimates output by the ML
algorithms. Furthermore, the hypothesis is that variations in
service metrics (frames per second - FPS) have a positive
correlation with INT metadata. The INT metadata used in this
work are:
• Ingress Global Timestamp: the timestamp, in µs, of when

the packet entered in the ingress (pipeline).
• Egress Global Timestamp: the timestamp, in µs, of when

the packet started processing in the egress (pipeline).
• Enq Timestamp: the timestamp, in µs, of when the packet

was initially placed in the queue for processing.
• Enq Qdepth: the queue depth when the packet was queued,

in units of the number of packets.
• Deq Timedelta: the time, in µs, that the packet remained

in the queue.
• Deq Qdepth: the queue depth when the package was

dequeued, in units of the number of packets.
In our study, we analyzed how INT metrics (data set X)

correlate with QoS metric (data set Y). In a nutshell, the fine-
grained metrics of network X are INT metadata and the QoS
Y metrics are data from the video components (FPS).

As in work [7], we consider a global clock, which can be read
by all devices on the network so that all clocks are correctly
synchronized. In addition, the evolution of metrics X and Y is
treated as a time series {Xt}, {Yt} and { (Xt, Yt) }, where
each instant of time t represents the state of the network and
the video service. The problem of estimating service metrics
Yt, in the time t, based on knowledge of fine-grained network
telemetry metrics Xt, can be modeled with M : Xt → Ŷt,
where Ŷt is a function of approximation of the function Yt, for
a given Xt. This is a regression problem that can be solved
with supervised ML [10].

III. PROJECT DECISIONS FOR THE MACHINE LEARNING
ALGORITHMS

In this work, the ML algorithms are applied for regression
problems to estimate service metrics from INT metadata. To
evaluate the hypothesis defined in Section I, the following
methods were used: Decision Tree (DT), Random Forest (RF),
Neural Networks (NN) and K-nearest neighbors (KNN). To
minimize overfitting problems in the data, Cross-validation
(CV) was used to train and evaluate the models. In addition, a
hyper-parameters’ optimization was performed to find the pa-
rameters in each model that obtained the best results. To assess

errors in predictive models, the Normalized Mean Absolute
Error (NMAE) was calculated.

In the next sub-sections, we briefly explain the ML algo-
rithms and the main concepts behind the CV, hyper-parameters
optimization, and NMAE.

A. Machine learning models

DT is a method based on the divide-and-conquer strategy,
seeking to solve a complex problem by decomposing it into
smaller subproblems. In this case, the solutions of the subprob-
lems are combined in a tree format, producing the solution of
the original problem.

The objective of the DT algorithm is to minimize the residual
sum of squares (RSS), described in Equation 1, where ŷRj

=∑
i∈Rj

Yi

|Rj | .

J∑
j=1

∑
i∈Rk

(yi − ŷRj)2 (1)

In this case, the space X of n features is divided into
J distinct, non-overlapping regions, R1, R2,...,Rj . For each
observation that falls in a given region Rj , a prediction is made,
which consists of the average of response values for the training
observations in Rj . Furthermore, ŷRj

is the average response
for the | Rj | observations of the j-th region.

RF is a model that extends DT using a multi-tree combination
strategy. The final estimation is calculated from the average of
the resulting estimates for each tree. Each tree is built using
a fraction of the input X attributes at random, changing the
format of each tree [7].

KNN is a ML model based on Euclidean distance (see
Equation 2), which uses the intuition that objects related to
the same concept are close to each other.

dist(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2)

In Equation 2, the distance is calculated from the sum of
differences between x and y, where x and y are vectors with
the same dimension (n).

Fig. 1. Neural Network with one hidden layer.

NN is a ML method that mimics the biological structure
of neurons. Networks are composed of tightly interconnected
processing units (artificial neurons - θ) that use mathematical
functions internally. These units are organized into one or more
fully connected layers. In each connection, there is a weight (w)
that adjusts to each stage of learning. For example, in Figure
1, we can observe two artificial neurons in the input layer: one

artificial neuron in the hidden layer, and one artificial neuron
in the output layer.

In this example, each neuron in the input layer has a value
(xi); These values are multiplied by the weights (wi) and added
together. The result (output) of the sum serves as input for the
next layer of neurons, according to the Equation 3.

n∑
i=1

xi × wi ≥ θ (3)

The algorithm of a NN involves an error correction rule,
which uses the optimization of a quadratic error function
between the outputs of the neural network and the expected
values. In this case, artificial neurons are used to predict a value
in regression problems.

B. Cross-validation

Overfitting is the problem in which the regressor have a good
result in estimating the objective function Ŷ , since it fits almost
perfectly to the input data X . This problem happens when the
regressor has been trained with all the input data, or with a
sizeable partition of the data.

To minimize this problem, the cross-validation strategy with
k parts (k-fold cross-validation) was used. This strategy allows
the division of data into k partitions, which are used for the
training and validation of the regressor independently. In this
work, the dataset was split into three parts: train, test and
validation. The k-fold cross-validation was performed in the
train and test parts. At the end, the validation part was used to
assess the models.

C. Hyper-parameter optimization

In general, ML methods are sensitive to variations in their
parameters. This implies that we could have different results
for the same method in the same dataset [11]. In fact, there
is a big space where the values of parameters can be chosen.
Techniques like Grid Search, Random Grid Search and Genetic
Algorithm are used to perform a search of the best parameters
that fit with the dataset [11]. In this work, we used a Random
Grid Search [12] considering that it is faster as it does not need
to check all the possible combinations.

D. Performance evaluation metrics

Generally speaking, in ML (as in many other fields) there is
no one-size-fits-all solution. The performance metrics can be
used to measure the different aspects of the model, such as
reliability, robustness, accuracy, and complexity [13]. For this
reason, it is necessary to use performance evaluation metrics to
extract conclusions from the results.

In regression problems, the evaluation of a ML algorithm
is usually performed by analyzing the regressor generated by
it in the estimation of new objects, not previously presented
in its training. In this case, the evaluation metrics are based
on the model’s prediction errors, which represent how far the
predicted value is from the actual value.

NMAE was used in this work to calculate the normalized
mean of the absolute errors of the predictions made. Equation

4 describes the formula, where m is the size of the test set; yi
matches sample i from the test suite; ŷi refers to the estimated
value for the sample i; and ȳ is the average of the responses of
the test set samples. X is a self-contained metric, derived from
MAE (Mean Absolute Error), that represents the percentage of
error in relation to the value to be estimated.

NMAE(y, ŷ) =
1

ȳ
(

1

m

m−1∑
i=0

|yi − ŷi|) (4)

IV. EVALUATION

To make our evaluations, a virtualized-based environment
was built running on a physical server model Dell EMC
PowerEdge R720 with 2 Intel Xeon processors® E5-2630 v2
2.60GHz, 6 cores per socket (24 vCPUs), 48GB RAM, 2TB
HDD and Ubuntu 18.04.5 LTS.

Virtualbox (6.1.8) was used as the hypervisor together with
Vagrant (2.2.13) and Ansible (2.9.15) for infrastructure provi-
sioning. All the artefacts are available for replication purposes
in a public repository1.

A. Components description

The topology described in Table I and shown in Figure 2 is
composed by 10 virtual machines having all their connections
provided by BMv2 switches, which are P4-capable virtual
equipments.

Fig. 2. Topology of experiment.

Name OS vCPUs Memory
dashServer Ubuntu 16.04.7 LTS 12 4GB
clientVlc Ubuntu 20.04.1 LTS 12 8GB

sinkServer Ubuntu 20.04.2 LTS 4 8GB
loadGen1 Ubuntu 20.04.1 LTS 6 8GB
loadGen2 Ubuntu 20.04.1 LTS 6 8GB
loadGen3 Ubuntu 20.04.1 LTS 6 8GB

loadGenMicroBurst Ubuntu 20.04.1 LTS 1 4GB
bmv2 1 Ubuntu 20.04.1 LTS 4 1GB
bmv2 2 Ubuntu 20.04.1 LTS 4 1GB
bmv2 3 Ubuntu 20.04.1 LTS 4 1GB

TABLE I
VMS DETAILS.

The dashServer is the component responsible for providing
video streaming in the DASH standard for the client and the
load generators. In the evaluation, two video streams were
made available: the transmission of a soccer game for the

1https://github.com/leandrocalmeida/.

client access; and a playlist containing the ten most accessed
videos on Youtube® for the load generators. Apache version 2
applications were installed as the web server; FFmpeg (2.8.17)
was used for encoding the videos; and MP4box (0.5.2) for
creating the MPEG-DASH manifest files.

The clientVlc is the component responsible for consuming
the video streaming of the soccer game, in which the VLC
video player (3.0.8) was executed, with modifications to collect
service metrics.

The BMv2 switches were programmed to append INT meta-
data in all INT packets. In this work, we adopt an out-of-band
approach, that is, specific INT probes are sent from the DASH
server to the sink node. So, no data packets are changed to
carry out INT metadata.

The sinkServer is the component responsible for collecting
INT traffic and storing it in the format supported by the ML
methods. Code written in Python was used to perform the
collection and storage functionalities.

The load generators (loadGen{1/2/3}) are components re-
sponsible for consuming the streaming of the ten most accessed
videos on Youtube®. They run two load patterns: a sinusoidal
and flashcrowd.

The sinusoidal function is described in Equation 5, where: A
represents an amplitude; F the frequency; and λ is a phase in
radians. The loadGen{1/2/3} execute video clients obeying the
sinusoid load function, increasing and decreasing over time.

f(y) = A sin(F + λ) (5)

The flashcrowd load describes a flash event, that is repre-
sented by a large spike or surge in traffic to a particular Web
site [14]. The flashcrowd is divided into three phases: ramp-up,
sustained and ramp-down.

Ramp-up is modeled by shock level (S), that is an order of
magnitude increase in the average request (video clients) rate.
Furthermore, it starts in t0 and ends in t1.

rampup =
1

log10(1 + S)
(6)

Sustained represents the maximum traffic (clients) level at
the time interval t1 and t2. It is also modeled by S.

sustained = log10(1 + S) (7)

Ramp-down represents the end of the flash event, gradually
decreasing the amount of traffic (video clients). In this phase,
n is a constant that defines the speed of reduction. Ramp-down
is modeled by n and S.

rampdown = n× log10(1 + S) (8)

The loadGenMicroBurst is a component that runs a mi-
croburst [15] generator used to create noise in the network
load. The purpose of having microbursts is to mimic as much
as possible the real traffic in a datacenter and make it difficult
for the ML methods to characterize the load patterns.

B. Experiment description

The experiment lasted approximately 19 hours (8h for sinu-
soid, 6h for flashcrowd and 5h for mix load). Mix load means
that both sinusoid and flashcrowd were used at the same time in
the experiment. The dashServer hosts the video with different
configurations (from high quality to low quality), as shown
in Table II, so that the client can use each one (transition)
depending on the traffic load in the network.

Type Resolution FPS GOP2 Kbps Buffer Codec
vı́deo 426x240 18 72 280 140 h264
vı́deo 854x480 24 96 980 490 h264
vı́deo 1280x720 30 120 2080 1040 h264
áudio - - - 128 - AAC
áudio - - - 64 - AAC

TABLE II
VIDEO PARAMETERS USED IN A DASHSERVER.

Every second, service quality metrics were collected in the
clientVlc component. In parallel, packets with INT instructions
were sent from the dashServer to the sinkServer in every
µs interval. INT metadata is then appended by each switch
(bmv2 {1,2,3}) in the path as shown in Figure 3. At each hop,
the INT packet size increases 32 bytes (metadata) from its
original size (48 bytes). Considering that the solution presented
here is initially applicable in datacenter, where the maximum
number of hops is generally not greater than five [16], it is
expected that the packets will not be fragmented.

Fig. 3. Add INT metadata.

Upon arriving at the sinkServer, the metadata is extracted and
stored in the proper format for the ML methods. In addition,
the load generators (loadGen{1,2,3}) run the load patterns,
sinusoid, flashcrowd3 and mix, in independent executions. The
parameters used are described in Table III.

Component Sinusoid Flashcrowd Mix
loadGen1 A=4, F=15, λ=5 S=(8-15), n=(1-5) A=2, F=7, λ=5,

S=(3-8), n=(1-2)
loadGen2 A=4, F=15, λ=5 S=(8-15), n=(1-5) A=2, F=7, λ=5,

S=(3-8), n=(1-2)
loadGen3 A=4, F=15, λ=5 S=(8-15), n=(1-5) A=2, F=7, λ=5,

S=(3-8), n=(1-2)
TABLE III

PARAMETERS USED FOR LOAD GENERATORS.

The microburst generator sent 500 bytes-packets in a time
interval between 0.01 - 1 second during all experiments.

2Group of Pictures.
3The value was chosen randomly from a range described in Table III.

After performing the experiments, the data (FPS and INT
metrics) were integrated into a matrix Mmxn, where: m rep-
resents the number of samples (time series); and n represents
the number of attributes used for the regression. Before sub-
mitting the data to the ML method, a pre-processing step was
performed, in which the objective was to improve the quality
and representation of the data. Pre-processing was carried out
following the steps described below:

Incomplete/missing data handling: Incomplete/missing
data (NaN - Not a Number) may lead to problems in the
execution of the methods [17]. For this reason, through the
function removeNaN, samples with this values were removed.

Removal of same-valued attributes: single-valued at-
tributes do not have information that helps distinguish ob-
jects, so they are considered irrelevant [17]. For this rea-
son, single-valued attributes have been removed with the
removeSameValuedAttr function.

Attribute normalization: attributes that have very different
scales can cause problems in machine learning methods [17].
For this reason, the z-score [18] attribute normalization process
was performed with the StandardScaler function of the
Scikit-learn package. In this case, the mean of each attribute
was equal to zero and standard deviation equal to one.

After the pre-processing step, the data was divided into
three partitions (train/test and evaluation) using the function
train_test_split from python’s Scikit-learn package. In
this sense, 80% of data went to training/test and 20% to eval-
uation. Train/test partition (80% from original) was split again
using the KFold cross-validation function, with k=5, creating
5 sub-partitions, 4 for train and 1 for test. Each partition was
submitted to the ML models of the Scikit-learn package, per-
forming a grid search through the RandomizedSearchCV()

function, in order to find the regressor with the smallest error.
For each method, 75 ML models were analyzed (25 for each
load), totalizing 300 models evaluated. The best estimator of
each ML method was used to evaluate the data evaluation
partition (20% from original) for each load.

V. RESULTS

First of all, we want to verify what is the most important
feature for the ML algorithms. Figure 4 shows which features
(INT metadata) contributed the most for the learning in all
load conditions. In this case, on the x-axis, we have the Gini
importance [19] representing the impurity level of the feature,
and in the y-axis we have the name of the feature (metadata).

The lower the level of impurity the better classified is the
feature. Therefore, we can observe that the metadata related to
buffers (highlighted with a box) has the most influence on the
learning model. Such a finding is of great importance since it
gives some hints that not all the network metrics may need to
be collected. It points to a direction where the ML algorithms
may have the same accuracy with less data.

Still in Figure 4, it is clear that the node (bmv2 3), which
is the closest to the client, has more influence on the learning
than all the others. We conjecture that the intermediate nodes
represent a good point of view of the state of the network,

Fig. 4. Random Forest feature importance.

however, it is the closest node to the client that has the most
accurate information for predicting video metrics. This result
supports a similar finding in related work [7].

Second, we want to evaluate what is the best ML method in
terms of NMAE, discussing the ability of ML models to predict
QoS metrics from different load conditions. In this sense, the
results in Table IV were obtained with the best estimator after
the grid search and hyper-parameters optimization for each load
pattern.

Load DT RF KNN NN
Sinusoid 33.74% 7.23% 25.81% 26.85%

Flashcrowd 30.28% 6.70% 20.54% 19.94%
Mix 25.71% 2.96% 29.82% 21.42%

TABLE IV
NMAE FOR LOAD PATTERNS INDIVIDUALLY.

Table IV shows that RF obtained the lowest NMAE at
evaluating individual datasets, that is, the model was trained,
tested and evaluated in every individual load pattern. A NMAE
of 7.23% was obtained for the sinusoid load, 6.70% for the
flashcrowd load and 2.96% for the mix load, having a mean
NMAE of 5.63%. Unexpectedly, the RF achieved its best
performance in the mix load pattern, which is the worst scenario
considering that both loads (sinusoid and flashcrowd) run at
the same time. Although this pattern of traffic is challenging
for the ML algorithms, it mimics the real traffic load in a
datacenter. We believe that this behaviour was because the mix
pattern generated a higher load, and made few transitions in
the network when compared to the sinusoid and flashcrowd
patterns. This can be inferred by observing histograms at Figure
5, in which the x-axis represents the number of the FPS played
in the client and the y-axis the percentage of this FPS frequency
in the experiment.

When looking at the sinusoid load (Figure 5(a)), we observe
that the client played the video with a high resolution (around
30 FPS) in 21% of the time and made transitions to other minor
resolutions (around 18 and 24 FPS). Figure 5(b) (flashcrowd
load) shows that the client played the video in the lower
resolution (around 18 FPS) in 27% of the time. Transitions
to higher resolutions were done at other moments in time. It is
important to say that about 4% of the time the client couldn’t

0 10 20 30 40 50
Sinusoid: frames per second

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

20.0%

Pe
rc
en

ta
ge

(a) Sinusoid

0 10 20 30 40 50
Flashcrowd: frames per second

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Pe
rc
en

ta
ge

(b) Flashcrowd

5 10 15 20 25 30 35
Mix: frames per second

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Pe
rc
en

ta
ge

(c) Mix

Fig. 5. Load Patterns.

play the video. In the mix load (Figure 5(c)), the client played
the video in high resolutions (around 30 FPS) in just 11% of
the time. This indicates that the load in the network was higher
for a longer time. This high load caused a lower number of
transitions in the resolutions, when compared to the other two
experiments, which is easier for ML algorithms’ estimations,
leading to a better NMAE.

Finally, our last evaluation tests the ability of a ML model,
trained in one load pattern, to predict QoS metrics from other
load patterns, as described below and shown in Table V.
• Sinusoid → Flashcrowd: ML model was trained with the

sinusoid load and evaluated with the flashcrowd load.
• Sinusoid→ Mix: ML model was trained with the sinusoid

load and evaluated with the mix load.
• Flashcrowd → Sinusoid: ML model was trained with the

flashcrowd load and evaluated with the sinusoid load.
• Flashcrowd → Mix: ML model was trained with the

flashcrowd load and evaluated with the mix load.
• Mix→ Sinusoid: ML model was trained with the mix load

and evaluated with the sinusoid load.
• Mix → Flashcrowd: ML model was trained with the mix

load and evaluated with the flashcrowd load.

Load DT RF KNN NN
Sinusoid → Flashcrowd 30.89% 33.22% 33.88% 35.69%

Sinusoid → Mix 28.75% 30.98% 41.00% 36.33%
Flashcrowd → Sinusoid 33.72% 36.15% 36.38% 42.69%

Flashcrowd → Mix 30.04% 30.34% 40.64% 43.57%
Mix → Sinusoid 35.11% 38.15% 37.42% 40.26%

Mix → Flashcrowd 31.11% 34.30% 34.03% 37.77%
TABLE V

NMAE FOR CROSS EVALUATIONS.

The general conclusion is that the models perform poorly
when evaluating against other load patterns. It is conjectured
that this happens because the load patterns explored different
regions of the space of possibilities (system states), as seen in
the histograms of Figure 5.

VI. RELATED WORKS

The work presented in [7] used a combination of metrics
from a computational cluster (CPU, memory and disk usage)
together with metrics from an OpenFlow network (number of
bytes/packets transmitted and received). An NMAE error of

9.17% was obtained with a sinusoid load. That work used a
static service (Video on Demand) which does not adapt to the
network load and then is easier to predict. Also, the number of
metrics was higher (48) compared to our work (18).

In [8], the authors propose a method to predict QoE using
ICMP probing in MPEG-DASH video service. For the QoE
inference, a RMSE (Root Mean Squared Error) of 0.98 was
achieved. The main limitation is that the prediction was carried
out without any load on the network. Also, the topology used
was simplistic, having only 1 node connecting the client to the
Dash server. In this way, ICMP queries did not suffer great
variations over successive buffers.

The work presented in [9] used TLS transactions to predict
QoE in a video service, obtaining an accuracy of 72%. This
work limits the scope only to video traffic with TLS, that
is, video services that do not use encryption would not be
anticipated. In addition, they used 38 features to predict QoE,
while this work only used 18.

In general, this work is positioned in the context of predicting
the quality of service metrics. The main difference of this work
in relation to others is that it uses fine-grained network metrics,
thanks to the programmable data plane together with the INT
specification and ML algorithms.

VII. CONCLUSIONS

This work presents a step forward towards the estimation of
DASH video QoS metrics using INT and ML. The results indi-
cate a NMAE error below 10% in the individual datasets when
the RF model is used. Results also indicate that the metadata
extracted from buffers has more impact on the learning model.
Also, the node closest to the client is the biggest contributor
to the video metrics estimation. All datasets used to evaluate
the ML models, as well as the setup infrastructure, are made
available from the IaC (Infrastructure as a Code) perspective
for replication and comparison purposes.

Despite the advances presented in this work, further studies
still need to be carried out. Important questions that are still
open include whether there is a ”best” place in the network to
collect INT metadata while keeping the same accuracy and the
verification of having a reduced number of INT metadata (e.g.
buffers-related metrics) is enough to maintain a low NMAE.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, Jul. 2014. [Online].
Available: https://doi.org/10.1145/2656877.2656890

[2] S. Arslan and N. McKeown, “Switches know the exact amount of
congestion,” in Proceedings of the 2019 Workshop on Buffer Sizing, ser.
BS ’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3375235.3375245

[3] P4, “In-band network telemetry (int) dataplane specification,” P4 Consor-
tium, Tech. Rep., 2021.

[4] ISO, “Dynamic adaptive streaming over http (dash)-part 1: Media presen-
tation description and segment formats,” ISO/IEC, pp. 23 009–1, 2014.

[5] S. Lederer, “Why youtube & netflix use mpeg-dash in html5,” https://bitm
ovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/,
2015, accessed: 2020-03-24.

[6] ISO, “Dynamic adaptive streaming over http (dash)-part 1: Media presen-
tation description and segment formats,” ISO/IEC, pp. 23 009–1, 2014.

[7] R. Stadler, R. Pasquini, and V. Fodor, “Learning from network device
statistics,” J. Netw. Syst. Manag., vol. 25, no. 4, pp. 672–698, 2017.
[Online]. Available: https://doi.org/10.1007/s10922-017-9426-z

[8] G. Miranda, D. F. Macedo, and J. M. Marquez-Barja, “A qoe inference
method for dash video using icmp probing,” in 2020 16th International
Conference on Network and Service Management (CNSM), 2020, pp. 1–5.

[9] T. Mangla, E. Halepovic, E. Zegura, and M. Ammar, “Drop the
packets: Using coarse-grained data to detect video performance issues,”
in Proceedings of the 16th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 71–77.
[Online]. Available: https://doi.org/10.1145/3386367.3431294

[10] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning, ser. Springer Texts in Statistics. Springer, New
York, NY, 2013.

[11] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random search,
genetic algorithm: A big comparison for nas,” 2019.

[12] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13, no. 10,
pp. 281–305, 2012. [Online]. Available: http://jmlr.org/papers/v13/bergst
ra12a.html

[13] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-
Solano, and O. Caicedo Rendon, “A comprehensive survey on machine
learning for networking: Evolution, applications and research opportuni-
ties,” Journal of Internet Services and Applications, vol. 9, 05 2018.

[14] I. Ari, B. Hong, E. Miller, S. Brandt, and D. Long, “Managing flash
crowds on the internet,” in MASCOTS 2003, 11 2003, pp. 246– 249.

[15] R. Joshi, T. Qu, M. C. Chan, B. Leong, and B. T. Loo, “Burstradar:
Practical real-time microburst monitoring for datacenter networks,” in
Proceedings of the 9th Asia-Pacific Workshop on Systems, ser. APSys
’18. New York, NY, USA: Association for Computing Machinery,
2018. [Online]. Available: https://doi.org/10.1145/3265723.3265731

[16] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “Hpcc: High precision
congestion control,” in Proceedings of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 44–58. [Online].
Available: https://doi.org/10.1145/3341302.3342085

[17] K. Faceli, A. C. Lorena, J. Gama, and A. C. P. d. L. F. d. Carvalho,
Artificial Intelligence: A Machine Learning Approach. LTC, 2011.

[18] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Data preprocessing for
supervised learning,” International Journal of Computer Science, vol. 1,
pp. 111–117, 01 2006.

[19] S. Nembrini, I. R. König, and M. N. Wright, “The revival of the Gini
importance?” Bioinformatics, vol. 34, no. 21, pp. 3711–3718, 05 2018.
[Online]. Available: https://doi.org/10.1093/bioinformatics/bty373

