
Tenant-Oriented Resource Optimization for Cloud
Network Slicing with Performance Guarantees

Lucian Beraldo
Department of Computer Science

Federal University of São Carlos (UFSCar)
São Carlos, SP, Brazil

lucian@estudante.ufscar.br

Angelos Pentelas
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece
apentelas@uom.edu.gr

Fábio Luciano Verdi
Department of Computer Science

Federal University of São Carlos (UFSCar)
Sorocaba, SP, Brazil

verdi@ufscar.br

Panagiotis Papadimitriou
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

papadimitriou@uom.edu.gr

Cesar A. C. Marcondes
Computer Science Division

Aeronautics Institute of Technology (ITA)
São José dos Campos, SP, Brazil

cmarcondes@ita.br

Abstract—Cloud Network Slicing (CNS), emerging alongside
the 5G mobile network, comprises a paradigm shift in the way
networks are provisioned, managed, and operated. Fundamen-
tally, CNS fosters the deployment of a multitude of modern appli-
cations, e.g., virtual and augmented reality, 4K video streaming,
and autonomous vehicles, which require ultra-low latency, high
bandwidth consumption, or both. Slicing promotes the realization
of such services through the allocation of computing and network
resource bundles, which, as CNS mandates, are isolated from the
rest of the network. Typically, such resources are arranged into
wide geographical areas (e.g., into multiple countries or even
continents), which implies that it is possible to allocate from
multiple infrastructure providers. This exacerbates the already
challenging problem of maximizing resource allocation efficiency,
a feature commonly addressed by CNS architectures.

In this respect, we study the optimized embedding of slices
across multiple domains. Therefore, we account for slices as
a collection of computing and network parts. Given specific
resource requirements from slice tenants and potentially multiple
offers per slice part, we model the problem as a Mixed Integer
Linear Program (MILP). We further design two heuristic algo-
rithms in order to mitigate the complex intricacies that would be
perceptible in large problem instances. Our evaluation results,
based on a simulation environment aligned with the NECOS
slicing architecture, indicate that the MILP approach yields
better efficiency compared to both heuristics, with respect to
client expenditure with a fair amount of performance parameters
in an adequate execution time. Our main contribution lies in the
optimization methods based on the split and combine approach,
integrated into the NECOS CNS architecture.

Index Terms—Cloud computing, network softwarization, slic-
ing, linear programming, optimization

I. INTRODUCTION

The slice abstraction represents a fundamental paradigm
shift in the relationship between clients and service providers.
Bandwidth-demanding applications, such as 4K and Virtual

This work was partly supported by the H2020 4th EU-BR Collaborative
Call, under the grant agreement no. 777067 (NECOS - Novel Enablers
for Cloud Slicing), funded by the European Commission and the Brazilian
Ministry of Science, Technology, Innovation, and Communication (MCTIC)
through RNP and CTIC and by the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

Reality (VR) video streaming are now becoming widespread,
stressing the need for better-prepared infrastructures [1], [2].
With the increasing popularity of devices capable of repro-
ducing such content, e.g. smart TVs, smartphones, tablets, VR
headsets, in a Video on Demand (VoD) fashion, such demand
is even higher. To guarantee the Quality of Experience (QoE)
of those services, computer networks’ availability, reliability,
and stability are crucial points. Additionally, such characteris-
tics, coupled with the ultra-low latency requirement, are vital
to actualize the mass adoption of connected vehicles, e.g., cars
and delivery drones.

Cloud Network Slicing (CNS) is a concept emerging with
the fifth-generation mobile network (5G), which proposes
to isolate network traffic, infrastructure resources (i.e., both
network and computing) and replicate content across multiple
domains and federations. This concept mainly relies on the
efficient choice of resources across several domains, federa-
tions, and providers, sometimes posing as hard to manage. A
key-enabler of effective network slicing consists in the efficient
selection of resources across several domains, federations, and
providers, which adds further complexity to the already chal-
lenging problem of resource allocation in virtualized infras-
tructures. The appropriate choice of resources can effectively
reduce the load from bustling servers to conserve computing
power and guarantee response times close to 1 ms. This could
also lead to efficient power consumption and enable the choice
of energy-efficient computing equipment for tenants, moving
towards sustainability [3] in green computing [4].

In this work, we present a split and combine optimization
model, which aims at near-optimal slice performance. In
particular, our model accounts for network and cloud Resource
Options from multiple providers, which renders it aligned to a
real-life scenario. This augments the exploration of solutions
that result in low cost, while adhering to performance and
capacity requirements, imposed by the slice constituents, i.e.,
nodes and edges. In order to fulfill this objective, we leverage
on the 5G slicing architecture from the NECOS project, which
offers a resource pool marketplace [5]. From an algorithmic978-1-6654-0522-5/21/$31.00 ©2021 IEEE.

perspective, we tackle this problem by designing a Mixed-
Integer Linear Program (MILP) and two heuristics. The former
encompasses the necessary resource constraints, as well as
an objective function that aims at minimizing the cost of
slice deployment. The two heuristics are mainly developed to
cope with the problem’s complexity, which will be perceptible
in large problem instances, e.g., many slice parts and many
Resource Options.

Our results indicate the MILP as the best choice for select-
ing Resource Options with the lowest monetary cost, while
providing sufficient infrastructure resources for the tenant.
Nevertheless, these efficiency gains come at the expense of
higher solver runtime and CPU consumption, compared to
both heuristics. Yet, we demonstrate that the load caused by
our algorithm on the workstation used to run the proposed
scenarios was manageable. The experiments show promis-
ing results on optimal resource allocation with a minimum
financial burden to the tenant. Finally, this work’s critical
contribution is the new MILP method for choosing providers’
Resource Options in the CNS context. In particular, the main
contribution of our work stands on the optimization methods
based on the split and combine approach, introduced within
the novel NECOS’ CNS architecture.

In the rest of the paper, we delve into the details of the
CNS architecture upon which our work is based, in Section II.
Subsequently, we elaborate on related work in Section III.
In Section IV, we present our mathematical model and our
optimization methods, as well as our constraint reasoning.
Then, in Section V, we present some realistic CNS scenarios
and perform simulations using the developed models. Finally,
we discuss future work plans and conclusions in Section VI.

II. 5G CLOUD SLICING ARCHITECTURE

NECOS proposes novel techniques and proofs of concept
to make CNS tangible. While NECOS introduces a holistic
approach to address many aspects concerning CNS, our work
assumes a simplified version of it. To delve into NECOS
details, we refer to the project deliverables1. Hence, in this
simplified version, the main actors are a slice tenant and
multiple infrastructure providers. The tenant, who can be an
individual or an organization, requests a slice instantiation.
The slice represents the resource requirements across the
network, which could be potentially scattered within a large
geographical area and could be owned by different providers.
Consequently, the tenant may subdivide the request into what
we refer to as Slice Parts, i.e. the constituent components of
a CNS. How the tenant should decompose its request into
multiple Slice Parts is not considered in this paper. However,
a work addressing this problem is [6].

The submitted tenant’s request is organized as a YAML file.
It is converted into a Partially Defined Template (PDT) (see
Listings 1 and 3), which is forwarded to the Slice Broker.
The Slice Broker is responsible for choosing Slice Agents, the
provider’s side elements of the NECOS architecture, who will

1http://www.h2020-necos.eu/

compete with offers for the Slice Part request by replying with
Resource Options comprising pricing and resource details. The
individual Slice Agents (one per participating infrastructure
provider) search within their respective infrastructures, in order
to discover resources and push them to fulfill the tenant’s
request. In this sense, there are no resource requests made to
the Slice Agents, so they advertise newly available resources
to the Slice Broker according to the provider scheduling. Such
offerings are conveyed to the Slice Broker in the form of
Resource Options. Providers send their Resource Options to
the Slice Broker using another YAML file called Partially
Defined Template with Resource Alternatives (or SRA), de-
picted in Listing 2 and Listing 4. The Slice Broker joins
all SRAs collected from the various providers and forwards
them in a single YAML file to the Slice Builder. This paper’s
methods and discussions revolve around this final step. The
Slice Builder uses the PDT and the SRA YAML files to choose
the best Slice Part for the tenant, and thus optimization is
required.

1 dc-slice-part:
2 name: dc-slice1
3 slice-constraints:
4 geographic: brazil.sp.saocarlos
5 resource-priority:
6 memory-mb: 0.2
7 storage-mb: 0.2
8 cpu-number: 0.2
9 power-kwh-day: 0.4

10 cost:
11 dc-model:
12 model: \
13 COST_PER_PHYSICAL_MACHINE_PER_DAY
14 value_euros: {<=: 10}
15 slice-timeframe:
16 service-start-time: {100918:10pm}
17 service-stop-time: {101018:10pm}
18 vdus:
19 - dc-vdu:
20 id: load_balancer
21 epa_attributes:
22 host_epa:
23 cpu-model: PREFER_COREi9
24 cpu-arch: PREFER_X86_64
25 cpu-vendor: PREFER_INTEL

Listing 1: DC Slice Part
tenant’s request YAML.

dc-slice-part:
name: dc-slice1
slice-constraints:
geographic: brazil.sp.saocarlos

cost:
dc-model:
model: \

COST_PER_PHYSICAL_MACHINE_PER_DAY
value_euros: 9

slice-timeframe:
service-start-time: {100918:10pm}
service-stop-time: {101018:10pm}

dc-slice-controller:
dc-slice-provider: IBM

vdus:
- dc-vdu:
id: load_balancer
epa_attributes:
host_epa:
cpu-model: COREi9
cpu-arch: X86_64
cpu-vendor: INTEL
storage-mb: 6000
memory-mb: 8092
power-kw-day: 30

Listing 2: DC Slice Part
offer YAML.

Source: Example Adapted from [7]
1 net-slice-part:
2 name: net-slice1
3 slice-constraints:
4 geographic: brazil.sp.saocarlos
5 cost:
6 dc-model:
7 model: \
8 COST_PER_PHYSICAL_MACHINE_PER_DAY
9 value_euros: {<=: 45}

10 slice-timeframe:
11 service-start-time: {100918:10pm}
12 service-stop-time: {101018:10pm}
13 links:
14 - dc-part1:
15 name: dc-slice1
16 - dc-part2:
17 name: dc-slice2
18 constraints:
19 bandwidth: 10 #Minimum

Listing 3: Net Slice Part
tenant’s request YAML.

net-slice-part:
name: net-slice1
slice-constraints:
geographic: brazil.sp.saocarlos

...
model: \

COST_PER_PHYSICAL_MACHINE_PER_DAY
value_euros: 45

...
wan-slice-provider: telefonica
links:
- dc-part1:
name: dc-slice1
dc-slice-provider: IBM

- dc-part2:
name: dc-slice2
dc-slice-provider: Amazon

constraints:
bandwidth: 10

Listing 4: Net Slice Part
offer YAML.

We should note that the allocation of the tenant’s request is
an immensely compounded task. A CNS with too many Slice
Parts could lose practicality since there could be no physical
parts that fulfill the performance requirements. Another archi-
tectural concern is the need for providers to conceal resource
information details from their competitors [8]. To this end,

the providers only disclose information that is relevant to the
tenant’s request.

III. RELATED WORK

Before we delve into our optimization model, to assess an
overall state-of-the-art in optimization methods for selecting
cloud infrastructure resources, we used a systematic review in
the literature. This intended to search and organize the related
work. Next we present the most relevant papers used for our
work.

NESTOR [6] comprises, among others, a MILP approach to
choose between VNF resources. It relies on a network service
composition layer between providers and tenants to guarantee
the privacy and fair competition. The results show that the
method utilizes a ranking method for VNFs, and maps them
in different datacenters controlled by different providers. This
leads to a much larger search space for the computation of
embeddings, as opposed to this work where resource offerings
are queried and bound to each particular request. Another
approach, focusing on intra-datacenter allocation efficiency,
is [9]. Pentelas et. al also use the concept of a network service
to organize the VNFs. However, their algorithms strive to
maximize the profit for infrastructure providers by maximizing
their respective resource utilization. Thus they do not account
for any aspects pertaining to service tenants (besides satisfying
resource requirements).

According to the systematic review of the literature ad-
dressed, there is no previous work focusing on CNS resource
allocation. Although there are some focusing on Network
Function Virtualization (NFV) and datacenter virtualization,
they do not have an explicit way of ordering the offers by
their performance capacity and power consumption, hence our
main contribution. In this paper, we advance the state-of-the-
art by coupling a tenant’s performance requirements with the
resource costs disclosed by various infrastructure providers.
Our approach consists of subdividing the slice specification
into pieces (which we term as split step), finding the optimal
set of resources for these pieces jointly, and combining them
(which we term as combine step).

IV. MILP FORMULATION

In this section, we discuss our mathematical model by
presenting the MILP objective function and restrictions used in
the process of choosing Slice Parts for composing the CNS.
For the formulation, we assume the existence of a physical
topology YAML file (SRA) with the Slice Parts offered by
the providers and an abstract topology YAML file (PDT)
with the Slice Parts specified by the tenant through NECOS
Marketplace in a single request.

With the request of this abstract topology (PDT) in mind,
the infrastructure providers supply Resource Options through
their Slice Agents. These Resource Options generate a physical
topology (SRA). The physical DC Slice Parts, i.e. the ones
offered by the providers, are contained in the set D and
the physical Net Slice Parts are contained in the set E. The
physical DC Slice Parts are associated with the following

set R = [v, s, t, e], containing the different possibilities of
infrastructure resources for the DC Slice Part, i.e. the amount
of RAM in megabytes (MB) (v), the amount of storage in MB
(s), the number of CPU cores, (t) and the power consumption
in kilowatt-hour (kWh) per day (e).

In order to concatenate the previous set of abstract and
physical Net Slice Parts with its correspondent symmetric set,
we introduce the definition in Equation 1. As such, we provide
a way for the optimization method to consider all of the
possibilities given by the tenant in the abstract topology (PDT)
and the providers in the physical topology (SRA). Equation 2
represents an array with the amount of resources m of type k
from every infrastructure provider offer i for the abstract DC
Slice Part u.

EV = E_
V E−1V , E−1V = [(v, u) : (u, v) ∈ EV]

E = E_E−1, E−1 = [(j, i) : (i, j) ∈ E]
(1)

mu
ik = [mu

1k,m
u
2k, ...,m

u
nk],∀u ∈ DV , k ∈ R (2)

Every resource amount m of resource type k within the
physical DC Slice Part i of the abstract DC Slice Part u
must be as high as the requirement specified by the tenant
t for the same resource k in the abstract DC Slice Part u.
This information is contained in the YAML file generated by
the tenants request (PDT). Its mathematical representation is
depicted in Equation 3.

mu
ik >= mt

uk,∀i ∈ D,u ∈ DV , k ∈ R (3)

Equation 4 denotes the normalization for the amount of
resource of type k offered from each provider for the DC Slice
Part i. The information could be interpreted as the offer from
the infrastructure provider for the resource k in the physical
DC Slice Part i. The value of this normalization ranges
between 0 and 1 for every resource type. This normalization
serves the purpose of maintaining the proportionality between
the values of the different resources. It avoids giving more
priority to higher scale parameters, e.g. the amount of the
RAM could vary between 1 gigabyte (GB) and 1000 GB, being
orders of magnitude higher than CPU cores, usually ranging
between 1 and 10 cores, in average.

m,u
ik =

mu
ik −min(mu

k)

max(mu
k)−min(mu

k)
,∀i ∈ D, k ∈ R, u ∈ DV (4)

The risk factor for the DC Slice Part in Equation 5 rep-
resents how suitable the DC Slice Part i is, offered by the
provider to the tenant, with respect to all Resource Options
from the other providers, i.e. the closer the risk factor gets
to 1 the greater is the risk for the tenant; whenever the risk
factor gets closer to 0, the lower the risk for the tenant, since
there will be sufficient resources. This level of risk occurs
because the physical DC Slice Part will have allocated the
required amount of resources for its application, which could
be problematic if the amount of the resources is inaccurately
dimensioned. The ds are the priorities for each performance

indicator, i.e., to express if the indicator has high or low
priority in the selection compared to the others.

rui =
∑

k∈{v,s,t}

(dk(1−m,u
ik))+dem

,u
ie ,∀i ∈ D, k ∈ R, u ∈ DV

(5)
It is worth mentioning that power consumption could be

considered a piece of sensitive information. Some infrastruc-
ture providers would prefer not to disclose it. In those cases,
this parameter should be removed from the risk factor in
Equation 5. Equation 6 represents that the summation of all
priority parameters is equal to 1, i.e., if the priority of one
parameter is increased, the priority of the other parameters
will decrease. ∑

k∈R

dk = 1 (6)

Equation 7 represents that the final cost cui for the DC Slice
Part i from the provider is dependent on the price c offered
by the provider to the tenant and the risk factor r. The price
pui must be at maximum the one specified by the tenant’s
requirement in the PDT, as in Equation 8.

cui = pui (1 + rui),∀i ∈ D,u ∈ DV (7)

pui <= ptu,∀i ∈ D,u ∈ DV (8)

As depicted in Equation 9, the final cost cui for the physical
DC Slice Part i and the final cost cuvij for the physical Net Slice
Part are contained in the set of real and positive numbers. We
assume that the price of pui is informed by the infrastructure
provider in the SRA file. Hence, the way it is calculated inside
the provider is not considered in this work.

(cui , c
,uv
ij) ∈ R∗+ (9)

In Equation 5, it is also calculated the final cost cuvij , using
the bandwidth of the physical Net Slice Part with a risk factor
in Equation 10. This represents a link connecting the physical
DC Slice Parts i to j, which are the SRAs for the abstract
DC Slice Parts u connected to v. With this combination, the
provider could have the chance to offer interconnected DC
Slice Parts of its infrastructure, obviating the need for the
traffic to flow using a third party link. In this case, the link
will have a low price because the traffic will be confined within
the provider’s domain. Together with the price provided by the
infrastructure provider, in Equation 10, it is used the bandwidth
amount of buvij to define the risk factor and to differentiate links
that support more network flows.

c,uvij = puvij (1 +
1

buvij
),∀(i, j) ∈ E, (u, v) ∈ EV (10)

If there is more than one offer for the same Net Slice
Part, the minimum value of the final cost c will be chosen.
This approach focuses on reducing the objective function’s
complexity and fostering choosing better Network Slice Parts
for the tenant. Similarly to the DC Slice Part, the financial
price c of the Net Slice Part must be at maximum the one that
the tenant desires to spend, as in Equation 12. The bandwidth
in the SRAs must be at minimum the one specified in the

PDT as in Equation 13, to have enough performance for the
tenant’s service to work correctly.

cuvij = min[c,uv1ij , c
,uv
2ij , ..., c

,uv
nij],∀(i, j) ∈ E, (u, v) ∈ EV

(11)
cuvij <= ptuv,∀(i, j) ∈ E, (u, v) ∈ EV (12)

buvij >= btuv,∀(i, j) ∈ E, (u, v) ∈ EV (13)

Finally, the MILP’s minimization objective function in
Equation 14 could be divided in two parts: the left part of
the sum referring to the DC Slice Parts and the right part
to the Net Slice Parts. In the left part (DC) we multiply the
selection variable x by the final cost parameter cui . In the right
part (Net) we have the y selection variable multiplying the
final cost parameter cuvij of the Net Slice Part, which connects
the pair of physical DC Slice Parts (i, j). The pair (i, j)
represents the provider’s Resource Options for the abstract DC
Slice Parts (u, v). We assume that the providers will submit
Resource Options to interconnect the physical DC Slice Parts
(i, j), if and only if they are able to interconnect them, using
the provider’s own infrastructure or a third party one. The
objective function has the normalization and other constraints
presented in Equation 15, 16, 17, 18 and 19.

Minimize:∑
u∈DV

∑
i∈D

xu
i c

u
i +

∑
(u,v)∈EV

∑
(i,j)∈E

yuvij c
uv
ij (14)

Subject to:
xu
i + xv

j ≤ 1 + yuvij (15a)
yuvij ≤ xu

i (15b)
yuvij ≤ xv

j ,∀(i, j) ∈ E, (u, v) ∈ EV (15c)

n∑
i∈D

xu
i = 1,∀u ∈ DV (16)

xu
i ∈ {0, 1},∀i ∈ D,∀u ∈ DV (17)
n∑

(i,j)∈D

yuvij = 1,∀(u, v) ∈ DV (18)

yuvij ∈ {0, 1},∀(i, j) ∈ D,∀(u, v) ∈ DV (19)

The binding between the Net Slice Part yuvij and the DC
Slice Parts xu

i and xv
j is represented in Constraint 15, i.e. if

the Net Slice Part is selected, both the above mentioned DC
Slice Parts must be also selected. Only one Resource Option
for the abstract DC Slice Part u must be selected and this is
offered by the provider i. This is specified by Constraint 16
and Constraint 17.

Constraint 17 also represents that the selection variable x
will have the value 1 or 0, i.e. the selection or not of a
physical DC Slice Part, respectively. Each provider has only
one Resource Option (physical topology SRA) per abstract DC
Slice Part. In a similar way, Constraints 18 and 19 represent
that only one Net Slice Part in the physical topology (SRA)
will be selected to connect two DC Slice Parts i and j.
This formulation was implemented in Python programming

language with the IBM ILOG CPLEX Optimization Studio
v12.8 - Student2 for the MILP approach. Because the IBM
CPLEX needs a software license, the execution environment
could not be publicly disclosed, but the implementation code
in Python was made public [10] and the results are shown in
the next section.

V. RESULTS

To evaluate our proposed method using the MILP formula-
tion presented in the previous Section IV, we use four different
scenarios. Those scenarios intend to compare the proposed
MILP with two other heuristic methods developed: Heuristic
1 selects the physical DC Slice Parts (SRAs) based on their
final cost, i.e. the risk factor together with the financial price
(Equation 7); the method Heuristic 2 uses only the financial
price in Euros for the selection.

(a) Scenario 1 - abstract topology (PDT).

(b) Scenario 1 - Physical topology.

Fig. 1: Scenario 1 - Multiple DC Slice Parts and one offer
from infrastructure providers.

Fig. 2: Scenario 2 - Three DC Slice Parts and multiple
Resource Options from providers in one node.

To guarantee that all the physical DC Slice Parts partici-
pating in the competition are interconnected, i.e. there’s no
loose end, we use the DC Slice Parts contained in the set of
physical Net Slice Parts. All the resulting data from the tests
presented here and the analysis of the resources’ footprint
of the computer used to run the experiments are publicly
available [10]. The Scenario 1 depicted in Fig. 1 is composed
of a varying number of DC Slice Parts and only one offer
for each part, i.e. a big slice with no competition between
the infrastructure providers. We use Scenario 1 as a baseline
for the YAML file parsing’ impact and information gathering
between the three methods. Fig. 1a is the tenant’s request

2https://www.ibm.com/analytics/cplex-optimizer.

and Fig. 1b is the infrastructure providers’ Resource Options,
where there are 3, 10, 50, 100, 150 and 200 DC Slice Parts
in both topologies.

On the other hand, Scenario 2 shown in Fig. 2 is composed
by a fixed number of three different DC Slice Parts, both in
the abstract and physical topology, and a varying number of
Resource Options for the second DC Slice Part, i.e. lots of
providers competing for the same part. This scenario intends
to compare how each method chooses the providers’ Resource
Options and the optimization impact in the workstation’s re-
sources by varying the number of providers’ Resource Options
in the physical topology between 3, 10, 50, 100, 150, and 200
DC Slice Parts.

Fig. 3: Scenario 3 - Multiple DC Slice Parts and three
Resource Options from providers in one node.

Fig. 4: Scenario 4 - Three DC Slice Parts and multiple
Resource Options from providers in one node.

To evaluate the impact of a more realistic approach, Sce-
nario 3 increases the number of DC Slice Parts in the whole
slice abstract and physical topologies, and the number of
providers Resource Options for only the second DC Slice Part.
Therefore, it allows us to observe the effects of both Scenario 1
and Scenario 2 together. We used the abstract topology (PDT)
from Fig. 1a as the tenant’s request.

Finally, Scenario 4 from Fig. 4 tries to illustrate aspects of
a real situation, where the providers have Resource Options
for different abstract DC Slice Parts, i.e. Resource Options
for more than one abstract DC Slice Parts. This scenario
has a fixed number of only five abstract DC Slice Parts in
the tenant’s request. Its focus is on evaluating an exponen-
tial number of possibilities between DC and Net Slice Part
Resource Options. Due to the need for generating a YAML
file with all the DC and Net Slice Parts Resource Options
as input for the implementation, to keep it simple, we define
the number of Resource Options between 10 and 25. Those
Resource Options are randomly distributed between the DC
Slice Parts, and then the Net Slice Parts are generated to

interconnect all the topology. In the next section, we present
the experiments’ results using the four previously defined
scenarios and discussions about each one of the experiments.

A. Experiment 1 - The influence of risk factor in the chosen
Slice Parts

Experiment 1 presented in Fig. 5 was designed to understand
how the risk factor (Equation 5), based on the number of
resources (CPU, RAM, storage, power, and price) influences
the three optimization methods compared (MILP, Heuristic 1
and Heuristic 2). Those resources are contained in the physical
DC Slice Part offered by the infrastructure providers. To check
this behavior, we implemented Scenario 3 with a fixed number
of both physical and abstract DC Slice Parts. Therefore, the
whole slice size does not grow, and the number of providers’
Resource Options is always the same.

This scenario was executed multiple times (100) to avoid
bias, each batch with a different set of parameters, saving the
number of resources of the selected DC Slice Part in each
execution. This bias avoidance allows us to check if some
of the resources or the financial price influence the selection.
To randomly generate the set of parameters for the Slice
Parts, the Linux pseudo-random number generator3 was used
as input, changing the values within the range specified in
each of the result graphs. The set of parameters are generated
and specified in the YAML file from the provider’s Resource
Options in each execution. It is essential to mention that the
Slice Parts financial prices offered by the providers are not
related to the number of resources it has. I.e. a potent Slice
Part does not mean an expensive Slice Part. This mechanism
stimulates competition between the providers, such as a low
price on some select dates.

The results presented in the candlestick graph in Fig. 5d
shows a slight tendency to lower values for the power con-
sumption in MILP optimization method as expected, i.e. the
third quartile of MILP (69) is lower than the Heuristic 1 (73)
and Heuristic 2 (75). The result can be explained because this
parameter’s priority is greater (0.4) than the other performance
parameters (0.2). I.e., the tenant prefers to give more priority
to lower power consumption parts. In contrast, in Fig. 5a, Fig.
5b and Fig. 5c, the minimum, maximum and the quartiles
are almost the same, which represents a random distribution
for the choosing of those parameters. The explanation is due
to the same priority specified by the tenant in this request.
Finally, Fig. 5e elucidates the choosing of low prices in all
the optimization methods, avoiding the Resource Options with
more than 10 Euros of price, with a very similar minimum,
maximum, and quartiles. The result confers the financial price
is the main parameter for the DC Slice Parts competition
between the providers, i.e. the price influences more than the
other parameters in the selection, even with the weight of the
performance parameters being the same. It must be pointed out
that with a different situation like Scenario 4, the risk factor
of the Net Slice Part, which interconnects the DC Slice Parts
might have a higher impact on the competition.

3https://bit.ly/3lcwtS4

B. Experiment 2 - Performance of the MILP method
Intending to test how efficient our MILP optimization

method is compared to Heuristic 1 and Heuristic 2, we
implemented Scenario 4 presented in Fig. 4 with a fixed size
of 5 DC Slice Parts and 10 Resource Options from providers
spread through different nodes. It was executed 100 times for
each method, each time with a different price in Euros for each
DC Slice Part and Net Slice Part. These executions represente
100 different tenant’s requests.

In Fig. 6, we present two candlestick graphs with the
distribution for the summation of the final costs and the price,
respectively, of all the Slice Parts chosen by each method.
Fig. 6a shows the summation of the final costs of all chosen
Slice Parts by each method. It is worth pointing out that the
developed MILP optimization has a better performance than
the others, i.e. in most cases the tenant will pay a lower price
and have more resources available for his slice. In the same
way, Fig. 6b shows that the tenant will pay fewer Euros in
most cases using our MILP approach.

VI. CONCLUSIONS

This paper focuses mainly on fulfilling the gap in the field of
study of new methods for optimization in the context of Cloud
Network Slices. We created the model based on a 5G network
slicing proposal from the NECOS project. To investigate the
model’s performance and to address the complexity of this
optimization problem, we developed our MILP as well as
Heuristic 1 and Heuristic 2. Our experiments showed that the
MILP method has a better performance in choosing Resource
Options with the lowest financial price and good infrastructure
resources. However, it generates more load in the workstation
compared to the heuristic methods.

In our preliminary performance workload experiments [10]
using a slightly different restriction in Equation 15, we exe-
cuted the code in a bare-metal commodity workstation. The
time spent in the optimization method is very small compared
to the whole program. Such a stage can still be improved
with better programming procedures and multi-threading tech-
niques, which were not used. In comparison, the Python MILP
optimization function has the improvements limited by the
CPLEX solver.

In short, the number of resources consumed during the
running of the experiments was not high for the presented
scenarios due to the low amount of combinations generated
in these scenarios. Despite this, we foresee a much higher
resource consumption with more Resource Options in Scenario
4 and a new scenario with more DC Slice Parts in a big slice
(e.g. more than 10 DC Slice Parts and 10 Resource Options).
With our experiments, it is possible to observe that increasing
the Slice Parts and the Resource Options also increases the
resources consumed by our algorithm.

At this time, we did not consider the geographic location of
Slice Parts to enable short response times. It is also planned to
add more Resource Options into Scenario 4, which is expected
to grow exponentially. With this addition, we plan to identify
the behavior of the MILP and heuristics implementations.

(a) Preference: number of CPU cores. (b) Preference: amount of RAM. (c) Preference: storage size.

(d) Preference: power consumption. (e) Preference: financial price.

Fig. 5: Distribution for the amount of resources chosen in Scenario 3.

(a) Summation of final costs (Euro*risk) (b) Summation of prices (Euro)

Fig. 6: Total price and cost comparison between optimization methods in Scenario 4.

Another aspect is to propose Scenario 5, where both the
providers’ Resource Options and the topology’s size increase
in all the Slice Parts. Moreover, it would be interesting to
compare the MILP approach presented here with other state-
of-the-art, like NESTOR [11].

It is also important to point out our work’s limitations,
considering that it is still necessary to scale the number
of combinations to stress out the methods and check their
behavior. Also, the power consumption parameter could not be
feasible when infrastructure providers refuse to inform it. So, it
is necessary to investigate further the possibility of removing it
from the formulation. Although we still have some limitations
in our approaches, we understand our main objectives were
fulfilled.

REFERENCES

[1] Y. Hu, S. Xie, Y. Xu, and J. Sun, “Dynamic vr live streaming over
mmt,” in 2017 IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting (BMSB), June 2017, pp. 1–4.

[2] C. Ge, N. Wang, G. Foster, and M. Wilson, “Toward qoe-assured
4k video-on-demand delivery through mobile edge virtualization with
adaptive prefetching,” IEEE Transactions on Multimedia, vol. 19, no. 10,
pp. 2222–2237, Oct 2017.

[3] N. Bocken, S. Short, P. Rana, and S. Evans, “A literature and practice
review to develop sustainable business model archetypes,” Journal of
Cleaner Production, vol. 65, pp. 42 – 56, 2014.

[4] E. Hachicha, K. Yongsiriwit, and W. Gaaloul, “Energy efficient con-
figurable resource allocation in cloud-based business processes (short
paper),” in On the Move to Meaningful Internet Systems: OTM 2016
Conferences. Cham: Springer International Publishing, 2016.

[5] P. D. Maciel, F. L. Verdi, P. Valsamas, I. Sakellariou, L. Mamatas,
S. Petridou, P. Papadimitriou, D. Moura, A. I. Swapna, B. Pinheiro,
and S. Clayman, “A marketplace-based approach to cloud network slice
composition across multiple domains,” in 2019 IEEE Conference on
Network Softwarization (NetSoft), June 2019, pp. 480–488.

[6] D. Dietrich, A. Abujoda, A. Rizk, and P. Papadimitriou, “Multi-provider
service chain embedding with nestor,” IEEE Transactions on Network
and Service Management, vol. 14, no. 1, pp. 91–105, March 2017.

[7] P. Valsamas, P. Papadimitriou, I. Sakellariou, S. Petridou, L. Mamatas,
S. Clayman, F. Tusa, and A. Galis, “Multi-pop network slice deployment:
A feasibility study,” in 2019 IEEE 8th International Conference on
Cloud Networking (CloudNet), Nov 2019, pp. 1–6.

[8] A. Abujoda and P. Papadimitriou, “Midas: Middlebox discovery and
selection for on-path flow processing,” in 2015 7th International Con-
ference on Communication Systems and Networks (COMSNETS), Jan
2015, pp. 1–8.

[9] A. Pentelas, G. Papathanail, I. Fotoglou, and P. Papadimitriou, “Network
service embedding with multiple resource dimensions,” in NOMS 2020
- 2020 IEEE/IFIP Network Operations and Management Symposium,
April 2020, pp. 1–9.

[10] L. Beraldo, “Tenant-Oriented Resource Optimization for Cloud
Network Slicing with Performance Guarantees (experiments),” Mar.
2021. [Online]. Available: https://doi.org/10.5281/zenodo.4582772

[11] D. Dietrich, A. Abujoda, and P. Papadimitriou, “Network service embed-
ding across multiple providers with nestor,” in 2015 IFIP Networking
Conference (IFIP Networking), May 2015, pp. 1–9.

