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Abstract—Wireless Sensor Networks (WSN) are key enablers
for several applications such as smart agriculture and smart
cities. Software Defined Wireless Sensor Networking (SDWSN)
paradigm improves WSN resource sharing, flexibility, and mana-
gement. Monitoring network performance is essential to network
management and it also plays an important role in making better
use of scarce resources. However, obtaining network performance
metrics in WSN is not trivial due to energy and computational
constraints on the WSN nodes. The main contribution of this
paper is a performance monitoring module for IT-SDN, an
SDWSN framework. This module collects information about the
data packets transmitted, queue delay and available energy on
the WSN nodes, and sends the information as requested by the
controller. The results showed that the monitoring module neither
impacts the delivery rate, delay and overhead of the network,
nor the energy consumption of the node. Also, the data collected
by the monitoring module is pretty similar to the real values.

Index Terms—network monitoring, software defined wireless
sensor networks, management

I. INTRODUCTION

A Wireless Sensor Network (WSN) has a key role to enable
the use of IoT (Internet of Things) devices [1], giving raise to
several applications, such as smart agriculture and smart cities.
By using a WSN infrastructure, sensor nodes are capable of
sending information through multiple hops until it reaches the
data collection point. The main WSN challenge is resource
limitation on the nodes (i.e., constrained processor, memory
and energy source).

Software-Defined Networking (SDN) [2] is considered one
solution that can improve the use of resources on WSN nodes.
The SDN paradigm separates control and data planes, where
the control plane is maintained by a separate entity called con-
troller, which has the global view of the network topology [2].
The fusion of SDN and WSN generated the Software-Defined
Wireless Sensor Networks (SDWSN) paradigm.

With the SDWSN, network management can be done dy-
namically and programmed by software. Network manage-
ment depends on how the network is monitored and what
information is collected to take actions on the network [3].
These actions are generally taken based on measurements
and network metrics such as packet routing, link loss ratio,
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route delay and delivery rate. However, monitoring WSN
performance measurements is not a trivial task.

Several management proposals present a monitoring system
that collects selected information locally and sends it constant-
ly to a repository. While this approach keeps the repository
updated, sending this information frequently increases traffic
and might cause network congestion, thus decreasing data
delivery rate [4]. For example, Sympathy [5] is a tool to detect
failures on the nodes that actively collect information related
to routing table and flow information.

Another approach is to monitor and store the performance
information in the device. When necessary, the entity in charge
of network monitoring requests the information. Therefore,
there is a trade-off between network traffic and local storage.
SNMP for 6LowPan [6] uses this approach; however, headers
compression and MIB storage may not suit all types of nodes.

These two approaches depict a trade-off. Constantly gene-
rating packets to send the performance information imposes
high traffic load on WSN, which is very costly due to resource
limitations and is likely to exhaust the energy available in the
node [4]. Conversely, storing information in the node may also
overflow the node capacity.

To address the challenge of the traffic load and node
capacity, as both approaches have their trade-offs, we aim
to reduce the traffic flow by sending information only when
requested, and also save information in the node memory. It
differs from the 6LowPAN approach, which uses MIB storage
and may not suit all types of nodes capacity

The main contribution of this paper is the design, imple-
mentation and evaluation of a monitoring module within a
SDWSN framework, IT-SDN [7]. This monitoring module pro-
vides network and node metrics, enabling real-time network
monitoring. More specifically, it collects three performance
metrics: node energy, number of data packets sent by the node,
and the accumulated delay of sent data packets. We evaluate
its overhead and compare the collected information obtained
from a simulator.

We extend IT-SDN to include monitoring messages that will
be exchanged between controller and nodes. We specify the
parameters to be monitored and how they are to be collected,
aiming to be the least intrusive possible. Results show that the
monitoring module does not cause a large overhead and it does
not impact the delivery rate, delay or energy consumption.
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II. IT-SDN MONITORING MODULE

The IT-SDN monitoring module was implemented in Con-
tiki OS [8]. The monitoring module assumes that the node
maintains its own information locally and sends it according
to the controller request defined by the WSN administrator. It
is not the scope of this paper to determine when and which
information the controller decides to request from the nodes.
We focus on the monitoring task and how the information is
obtained by the SDN controller.

A. Performance information

In the monitoring module, we collect three metrics: accu-
mulated queue delay in the node, number of data packets the
nodes sent and the energy of the node.

Queue delay: The end-to-end route delay metric can be
expressed as the difference between the time the packet was
sent and the time it was received. Besides, it can be calculated
by the sum of the transmission delay, propagation delay and
queue delay. In WSN, it is not simple to calculate these
delays, since nodes have simple hardware usually without
synchronized clocks. One approach is to synchronize the
nodes, and then calculate the end-to-end route delay [9] [10].
However, node synchronization requires more actions to be
taken and more packets in the network [11]. Another approach
is to use the individual time of each node and sum these
times [12]. If the medium propagation delay and the number
of bytes sent are known, then each node has to calculate its
queue delay. Thus, the route delay can be given by the sum
of the queue delay for each node in the route, the propagation
delay and the transmission delay.

We followed the second approach in our monitoring module.
Each node calculates the accumulated queue delay considering
two situations: sending and forwarding packets. For sending
packets, we calculate the difference between the current local
timestamp when a data packet comes in the transmission
queue and when the packet is sent. For forwarding packets,
the accumulated queue delay considers the difference between
local timestamp in receiving queue and when a packet is sent.

Number of data packets sent: The delivery rate and packet
loss are important network metrics. The delivery rate is
calculated by the ratio of data received and the data sent.
Packet loss is calculated by the difference between the packet
sent and the packet received. Hence, the quantity of data
packets the nodes sent can be used to calculate packet loss
and delivery rate. In this monitoring module, the node keeps a
counter that is incremented every time the node sends a data
packet. When the controller requests this counter, it should
also request how much data packets were received at the sink
from that particular node in order to calculate the delivery rate.

Energy available: Energy is crucial for the WSN nodes.
To obtain the node’s energy available, we used Energest [13].
This module calculates the accumulated energy consumption
for a node each minute and how it impacts on the node energy.
When the controller requests the energy for a node, it will be
returned the amount of energy available relative to the initial
value.

B. Information storage

The performance information could be stored in RAM or in
a text file in ROM. RAM is volatile and one must be careful
not to overflow its capacity. On the other hand, storing data in
a text file, such as a MIB, requires a file system, such as Coffee
File System (CFS) [14]. Yet the amount of ROM necessary
to support the CFS, IT-SDN and the application would not fit
the ROM in a typical device. Therefore, we decided to store
the performance information in RAM.

Number of data packets sent information has 1 byte, and the
queue delay has 4 bytes. Since both values are accumulated,
we need to reset them in order to keep the information fresh
and to avoid memory overflow. Our approach is to reset both
according to a predetermined number of data packets sent,
which is defined in the configuration file.

C. Monitoring message exchange

To implement the communication between the controller
and the node, two IT-SDN packets were created: Request
Packet and Monitoring Packet.

The Request Packet is routed by the source and is composed
by the IT-SDN header (6 bytes), the next hop address (2
bytes), the destination (2 bytes), the path length (1 byte),
and the message (2 bytes). The message indicates to the
node (destination) which performance metrics the controller
requested.

Each bit of the message works as a flag of a specific metric,
whereby: if the bit is set to ‘1’, it was requested; and if the
bit is set to ‘0’, it was not. Thus, 2 bytes can represent 16
different metrics. The total frame is composed by the Request
Packet plus the MAC header (9 bytes) and the FCS (2 bytes).
This means a total of 24 bytes out of 127 bytes supported by
the IEEE 802.15.4 standard.

Differently from the Request Packet, the Monitoring
Packet is routed using a flow identification
(SDN CONTROLLER FLOW). The monitoring packet
is composed of the IT-SDN header (6 bytes), the flow ID
(2 bytes), the performance metrics sent flags (2 bytes), and
the metrics information (up to 64 bytes). Each metric is
composed only by its value (4 bytes). The total frame is
composed by the Monitoring Packet plus the MAC header (9
bytes) and the FCS (2 bytes). It means a maximum packet
size of 85 bytes.

III. EXPERIMENTAL METHOD

In order to evaluate our proposal, we analyze the overhead
and also the accuracy of the information obtained by the
monitoring module. We consider aspects of the frequency
that controller requests the monitoring packets and when the
information is reset in the node.

We performed the experiments using Cooja, a network sim-
ulator of emulated Contiki WSN nodes [15]. We considered a
network grid topology with several sizes, where node 1 was
set as the controller, node 2 as the sink, and all other nodes
sending data packets to the sink. Nodes start to send data
packets at a random time up to 3 minutes after the network



Table I
SIMULATION PARAMETERS

Simulation parameters
Topology Square grid
Number of nodes 25, 36, 49, 64, 81
Node boot interval [0, 1] s
Number of sinks 1
Data traffic rate 1 per minute
Data payload size 10 bytes
Data traffic start time [2, 3] min
Running time for simulation 1 hour
ContikiMAC channel check rate 16 Hz
MAC layer CSMA
Radio Medium Model UDGM
Device Sky mote

IT-SDN parameters
Version 0.4
Controller retransmission timeout 60 s
ND protocol Collect-based
Link metric ETX
Neighbor report max frequency 1 packer per minute
CD protocol none
Route calculation algorithm Dijkstra
Route recalculation threshold 20%

Flow table size 15 entries

initialization. The data packet payload has 10 bytes. Table I
summarizes the configuration parameters related to IT-SDN
and Contiki OS.

We need to determine when the accumulated information
is reset. We chose to reset the accumulated information at a
50-minutes interval (50 packets). In order to understand the
impact of the reset interval, we decided to evaluate a different
reset value, choosing to reset every 100 packets as well.

Moreover, we consider the controller requests frequency.
For each controller request, two packets will be transmitted:
one packet for the request and one for the response. To evaluate
the impact of these new packets and also the accuracy of
the data obtained by the monitoring module, the controller
requests the information for one node every minute. This
means that, in the first minute, the controller requests the
information in node 3; in the second minute, the information in
node 4 and successively, until it reaches all the nodes and starts
again. Moreover, we consider the controller request made for
50% of the nodes. With this, we can compare if with fewer
controller requests, the information can be representative for
all the network nodes.

Furthermore, to compare the overhead of this monitoring
module, we considered IT-SDN running without the mon-
itoring module (our baseline) and then running with the
monitoring module. Each simulation was performed 10 times
for one hour.

Table II summarizes the scenarios described. When present-
ing our results (Section IV), we refer to the first column of
this table.

Table II
SCENARIOS ANALYZED FOR ALL THE NETWORK SIZES.

Reset information Controller Request Monit.
1 – – No
2 50 All nodes Yes
3 50 50% Yes
4 100 All nodes Yes
5 100 50% Yes

We compared the results from the monitoring module with
the simulation trace files from Cooja to evaluate its accuracy.
We also used the traces to calculate the mean delay, total
energy spent, mean delivery rate and the overhead of control
packets when the monitoring module is active.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents results and related discussion consid-
ering two aspects: the impact of the monitoring module on the
WSN performance, and the accuracy of the information ob-
tained by the monitoring module. The results were calculated
considering a 95% confidence interval for the mean for all the
10 simulation runs for each scenario (as shown in Table II).

A. Monitoring module performance

In order to understand the impact of the monitoring module,
we evaluate the WSN performance regarding delivery rate,
delay, energy spent and control overhead. The delivery rate
and the delay are calculated just for the data packets.

Figure 1 shows the mean data delivery rate for all the 10
simulation runs for each scenario. In most of the network
sizes, the delivery rate for the scenarios with the monitoring
module active is very close to our baseline, scenario 1 (without
monitoring). In the worst case, the difference is less than 3%.
Thus, the delivery rate with the monitoring module active in
the network is about the same as that in our baseline.

Figure 1. Mean delivery rate (%) for 10 simulation runs for each scenario.

Another important metric we evaluate is the data mean
delay, depicted in Figure 2. We observe that the delay in



most of the scenarios with the monitoring module active
is similar to scenario 1 (our baseline), with an about 200-
millisecond difference. The exceptions are scenarios 3 and 5
for the network with 81 nodes, where the difference is up
to 1200 milliseconds. The controller monitoring requests for
these scenarios target only the odd nodes in order to achieve
50% of the network. This pattern causes requests to nodes that
are more hops away from the sink, thus increasing the delay.
We also observe that the delay increases for networks with
64 and 81 nodes. However, such delay also increases in our
baseline scenario (without monitoring) since there are more
packets in the network. Thus, we conclude that the monitoring
module activation does not impact the network delay.

Figure 2. Mean delay (milliseconds) for 10 simulations for each scenario.

We calculated the energy consumption for all the nodes in
each scenario and the network size to verify the difference with
the monitoring module active. The energy consumption spent
is shown in Figure 3. Note that the mean energy consumption
spent is very similar in all the scenarios, being no more than
2% when compared to scenario 1. The energy consumption
spent increases when there are more nodes in the network
for all the scenarios, including scenario 1 (our baseline).
Therefore, we conclude that the monitoring module does not
impact the energy consumption on the nodes.

Figure 3. Mean energy consumption for all the nodes in each scenario.

We calculate the control overhead for all IT-SDN control
packets. Figure 4 shows the sum of all the control packets
in the experiments. Notice that the control overhead is very
similar in all the scenarios and the difference is about 10%
when compared to scenario 1 (without monitoring module).
For the topologies with 25 and 36 nodes, the overhead in
scenario 1 is greater than the other scenarios. This may occur
because of some congestion or retransmission. In the worst
case, for the network with 81 nodes, the difference is about
22% when compared with scenario 1. However, we consider
this difference acceptable since there are more nodes receiving
requests from the controller and these packets do not impact
the metrics discussed earlier. We thus conclude that the new
control packets from the monitoring module do not cause a
significant overhead that impacts the other metrics with this
controller request frequency.

Figure 4. Sum of all control packets of IT-SDN for each scenario.

B. Monitoring module accuracy

To evaluate the monitoring module accuracy, we compare
the values obtained by the monitoring module with the values
obtained by the Cooja trace files. We consider delivery rate and
delay as the main metrics to be compared. We only consider
data packets to compare these metrics.

Figure 5(a) shows that for most of the scenarios, the
delivery rate obtained by the monitoring module presented
about 10% difference when compared to the data obtained in
trace files from Cooja. We notice that for scenarios 3 and 5 the
data obtained by the monitoring module presents about 15%
difference when compared to the value obtained by the trace
file from Cooja. This indicates that the controller request for
50% of the nodes lost some information. However, as we see in
other cases, as in scenario 2 with 36, 49 and 64 network sizes,
the data obtained by the monitoring module is about 15%
different from the data obtained by Cooja. Hence, we conclude
that the controller request for 50% of the nodes every minute
for one node can represent the general nodes even presenting
a large difference from the scenarios with controller request
to all nodes.

In general, the delay calculated by the monitoring module
presented a difference of about 500 milliseconds when com-
pared to the values obtained by the trace files from Cooja



(a) Delivery rate

(b) Delay

Figure 5. Results of delivery rate and delay for the nodes requested by the controller and the data obtained by the monitoring module(M).

(Figure 5(b)). Except for scenarios 3 and 5, we see a greater
difference for networks with more than 49 nodes (about 1.000
milliseconds). Also, in scenario 5, that the reset information
occurs every 100 packets, we see that for a network with 64
nodes, the monitoring module obtained a value greater than
that obtained by trace file. From this, we conclude that the
information obtained for 50% of the nodes can represent the
overall of the network, but the information reset should be
conducted with fewer packets to obtain fresh data. Also, a
controller request must be considered more frequently or for
more nodes at the same time to verify the data obtained.

V. RELATED WORK

The main work related to metric monitoring is
TinySDM [3]. TinySDM is a software-defined measurement
architecture for WSN that allows metrics to be collected
dynamically. The evaluation of TinySDM was based on
the comparison of tree measure tools: path, delay and data
collecting information. However, the implementation was for
TinyOS, which limits its use and is not currently updated.

A framework for performance monitoring was proposed
and it aims to provide a global definition for metric mon-
itoring [16]. The authors define generic metrics based on
an industrial project to generalize which metric should be



collected for efficient monitoring. The metrics are divided
into seven categories: delay tolerance, loss tolerance, capacity
of the link, reliability, energy efficiency, criticality and fault
tolerance. The main goal to calculate the metrics is to infer
most of the metrics from the traffic flow and to calculate what
is possible in the node to avoid unnecessary information traffic.
In our work, we collect three metrics that can fit the seven
categories mentioned by these authors.

Lindh and Orhan [17] presented a measurement-based per-
formance management system for WSN that analyzes some
metrics for new requests to join the network. A performance
meter is implemented in the sensor nodes that have two
counters: the number of received and sent packets; and a
counter of bytes. These counters measurements are set in a
monitoring packet, which is sent to a coordinator node after a
set of data packet blocks. It was also implemented for TinyOS.
Our work follows the same idea of collecting measurement
information from the node and sending it to be processed in
a management system. However, our work differs in three
aspects: first, we present the measurement collection in the
SDWSN context; second, our monitoring packets are just sent
to the source when requested, reducing the number of packets
in the network; and third: the implementation with IT-SDN is
not limited to TinyOS.

The works cited in this section propose different solutions
for obtaining the metrics. Yet, most of them have limitations
due to their operating system. Our work implements a solution
for metric monitoring that can be used in any management sys-
tem that connects with the controller in a SDWSN context. The
implementation uses IT-SDN that is available for download.
The results show that the monitoring module activation obtains
data important for network monitoring and management, and it
does not impact the main metrics: data delivery rate, network
delay and energy consumption of the nodes.

VI. CONCLUSION

The metric monitoring task is crucial to maintain and to
manage the network. However, it is not a trivial task in the
Software Defined Wireless Sensor Networks context.

In the IT-SDN monitoring module proposed here, we pre-
sented a solution to obtain some metrics (quantity of data
packets sent by the node, node energy and delay of the node),
which can be used to take actions on the network. It was
implemented to maintain the monitoring information on each
node and only send it when requested by the controller.

By using the metrics monitored by this module, a manage-
ment system could calculate the delivery rate, route delay and
the energy level of the nodes to take actions dynamically and
automatized.

The results showed that the monitoring packets do not sig-
nificantly increase the network control packets. The difference
between the scenarios with the monitoring module in the
worst case is about 22% when compared to our baseline.
However, the data delivery rate, the network delay and the
node energy consumption are not impacted by the monitoring
module activation. Moreover, it also showed that the data

obtained by the monitoring module is pretty similar to the data
obtained by the Cooja simulator. Only in scenarios where the
information reset occurs every 100 packets, the results are less
accurate since the data collected is not fresh.

As future work, we intend to analyze the impact of different
controller request frequencies, such as requesting information
for more than one node every minute Besides, we plan to
analyze other data packet frequencies (1 data packet every
30 seconds or 1 data packet every 5 minutes) and how the
information reset should work up with them to present fresh
data.
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