
Design and Implementation of an Elastic
Monitoring Architecture for Cloud Network Slices

André Beltrami∗, Paulo D. Maciel Jr.∗†, Francesco Tusa‡, Celso Cesila§,
Christian Rothenberg§, Rafael Pasquini¶ and Fábio L. Verdi∗

∗Federal University of São Carlos, Sorocaba, Brazil
Email: {beltrami,verdi}@ufscar.br

†Federal Institute of Paraı́ba, João Pessoa, Brazil
Email: paulo.maciel@ifpb.edu.br

‡University College London, London, UK
Email: francesco.tusa@ucl.ac.uk

§University of Campinas, Campinas, Brazil
{ccesila,chesteve}@dca.fee.unicamp.br

¶Federal University of Uberlândia, Uberlândia, Brazil
Email: rafael.pasquini@ufu.br

Abstract—A key feature of the cloud network slicing concept
is the dynamic (de)provision of end-to-end infrastructures com-
posed by computing, network, and storage resources, in order
to meet the service needs of a variety of vertical industries.
The resulting resource ensemble needs to be instantiated over
a (potentially large) number of administrative and technolog-
ical domains – a complex challenge for the management and
orchestration of the allocated resources. Resource monitoring in
this new so-called slice entity is extremely important in order to
address the above operations. Therefore, in this work, we discuss
the design and implementation of an elastic architecture for the
monitoring of physical and virtual resources in cloud network
slices that span both multiple administrative and technological
domains. Since the concept of cloud network slices is quite
recent in the literature, we highlight that our results present the
performance evaluation of the proposed monitoring architecture
when instantiating, stopping or performing elasticity operations
on the slices. Additionally, we also analyze the performance of the
architecture by scaling the number of metrics being monitored
in overloaded scenarios.

I. INTRODUCTION

The concept of cloud network slicing [1]–[3] is centered
around the coexistence of different types of services on
shared heterogeneous infrastructures to support the orthogonal
demands of vertical use cases. Through emerging technologies
such as 5G, SDN and NFV, combined to more consolidated
ones like cloud computing, infrastructure “softwarisation” can
provide the flexibility and customization required to create
logical resource bundles tailored for particular use cases.

With the goal of providing end-to-end customized infras-
tructures to vertical customers, cloud network slices envelop,
in single units, elements from different categories of resources
that include cloud computing, network, and storage. The
instantiation of these resources should span across multiple
administrative or technological domains in an integrated man-
ner. Once instantiated, the tenant requesting the creation of
the slice should be able to access, configure and manage the

resource bundles even with the possibility of recursively re-
allocating resources to other tenants or outsourcing resource
management to the slice provider.

Even though the topics of computing and networking mon-
itoring have been widely studied in the literature, the context
in which they are addressed in this paper bring valuable
novelties to the community, including new challenges due
to some particular characteristics of cloud network slicing
embodiments. Regarding novelties and new challenges raised
by this concept we can highlight: (i) a slice is naturally
multi-tenant and multi-domain and such domains are totally
heterogeneous having different VIMs (Virtual Infrastructure
Managers) and WIMs (Wan Infrastructure Managers), which
brings a huge heterogeneity for any monitoring solution; (ii)
a slice is intrinsically composed by computing, networking
and storage, so any monitoring solution should be capable of
collecting metrics from different infrastructures; (iii) a slice
orchestrator is capable of instantiating VIMs and WIMs on-
demand during the creation of the slice and during the run-time
phase by adding new resources, which is totally different and
new when compared to the static provisioning of VIMs and
WIMs; and (iv) elasticity, both vertical and horizontal, which
are key features in slicing and well explored in our paper.

In this paper, we propose a monitoring architecture with
the flexibility and capabilities to create, manage and stop
different software components that collect measurements from
the resources of a multi-domain cloud network slice. The
architecture is also generic enough to support different moni-
toring entities. Among all the characteristics of the proposed
architecture, the main one is that of being “elasticity-enabled”,
i.e., it is able to trigger dynamic monitoring adaptations
as a consequence of a slice elasticity action. The core of
the solution revolves around the use of different Monitoring
Adapters that interact with distinct types of slice resources for
timely collection of metrics.978-1-7281-4973-820$31.00 © 2020 IEEE

II. BACKGROUND

A. Cloud Network Slices

Cloud network slicing [1] refers to an end-to-end infrastruc-
ture composed of computing, network and storage resources.
This variety of resources must be instantiated transparently to
the tenant, who has the responsibility to manage and orches-
trate the services that will be instantiated across the end-to-
end infrastructure. Being an end-to-end concept, slices include
several components that belong to different administrative
domains and, therefore, demand a higher abstraction level for
resource management and monitoring. In addition, the slice
tenant-provider relationships introduce new business models.
Next, we describe the key actors and relevant terms:

• Infrastructure Provider: owns and manages physical or
virtualized resources offered to compose a slice required
by a single or multiple tenants;

• Slice Provider: although it may not own a physical
infrastructure, it is responsible for providing end-to-end
slice services between different administrative domains,
such as slice creation, decommission, orchestration, man-
agement and monitoring;

• Tenant: hires resources, manages and orchestrates cloud
network slices and offers services to customers/users;

• Slice Part: one slice is composed of slice parts (one or
more), and each slice part normally corresponds to one
Infrastructure Provider (DC or WAN);

• Administrative Domain: set of resources managed by
a single organization, which maintains such resources
under a common administration, and may or may not
use different technologies for management operations.

Several important characteristics desired in a cloud net-
work slice can be quoted: automatic life-cycle management,
unattended operation, simplified resource provisioning and
management, dynamic re-provisioning, high scalability and
reliability, cost-effective and rapid deployment of the network
or service, the possibility of new business models, among
others. In order to provide these desired aspects, there is
a number of activities aiming at standardizing slices being
endorsed by different entities, such as 3GPP [4], ETSI [5]
and NGMN [6]. However, despite all ongoing efforts, for
the best of our knowledge, there has not been any particular
initiative related to the specification of a dynamic architecture
for monitoring cloud network slice resources. This is precisely
the gap we intend to contribute to with our architectural and
implementation work.

B. Vertical and Horizontal Elasticity

In the context of cloud network slices, one of the most
important operations is the elasticity of resources. Moreover,
the elasticity process must consider that the slice is provisioned
in a multi-domain and multi-technological environment, capa-
ble of “growing” or “shrinking” the resources dynamically.
Therefore, infrastructure run-time changes require an elastic
architecture for the monitoring and management of resources
or services, in order to detect dynamically these alterations.

Slice Part 1 Slice Part 2 Slice Part 3
Slice

Scale Out
New Slice Part

Scale In
Remove Slice Part

Scale Down
Remove Resources

Scale Up
Add Resources

Vertical Elasticity Horizontal Elasticity

Fig. 1: Elasticity models in cloud network slicing.

In line with the resource virtualization literature [1], [7],
[8], we identify two types of elasticity (vertical and horizon-
tal) related to the way resources (computing, networking or
storage) can grow or shrink in the context of cloud network
slices:

• Vertical elasticity is the ability to dynamically resize slice
parts as needed, in order to adapt for workload changes.
This property expresses the ability to augment (scale
up) the number of resources available inside a particular
slice part (i.e., physical machines, switches, routers),
when the demand for the services supported by the slice
increases. On the other hand, the vertical elasticity scale
down occurs when idle resources are identified and thus
removed from a particular slice part.

• Horizontal elasticity is the ability to create (scale out) or
remove (scale in) slice parts dynamically, using resources
from other providers, following the need to adapt to
workload changes. As the service workload increases
and available slice part resources are not enough to
cope with the demand, it may be possible to scale out
resources by requesting the creation of new slice parts
to additional infrastructure provider and then connecting
them appropriately.

Figure 1 illustrates the two previously defined types of
elasticity, i.e., vertical and horizontal. The former can be seen
on the left side of the figure, in which slice part 1 resources are
removed/added simultaneously (in purple and orange, respec-
tively). In contrast, the representation of horizontal elasticity
can be seen in slice parts 2 and 3. Slice part 2 has been
removed as a result of a horizontal elasticity scale in operation
(in purple) and slice part 3 has been added as a result of a
horizontal elasticity scale out operation (in yellow).

III. RELATED WORK

Despite the fact that topics related to the monitoring and
management of cloud and network infrastructures are widely
studied in the literature, we could not find any work in the
context of cloud network slices and all novelties raised by
this new entity. Therefore, the papers presented in this section
focus on proposals that are somehow related to ours, as they
involve resource monitoring and management or even different
slice concepts.

The survey in [9] presents an overview of the term monitor-
ing with an emphasis on cloud environments and data centers.
The objective of this work is to qualitatively compare some

of the most used monitoring tools, considering some of the
pillars of monitoring, such as scalability, portability, multi-
tenant environment, and the ability to adapt according to the
tenant. These characteristics among others mentioned in the
article should be considered to better meet the needs of tenants
and incorporated into the context of cloud network slicing.

DASMO [10] proposes an extension of the MANO architec-
ture to support network slicing in context of the management
and orchestration of virtual network functions. The paper
discusses possible changes to the MANO architecture to
encompass the concept of network slicing and issues regarding
the monitoring aspects (e.g., scalability). The authors describe
in detail the proposed components and their responsibilities.
In addition, qualitative aspects of the presented proposal are
discussed. However, neither a quantitative analysis nor a proof
of concept implementation of the architecture is presented.

The work presented in [11] proposes a framework for
cloud monitoring. The idea is to provide a self-configured
monitoring system for cloud computing, in particular running
OpenStack and different monitoring tools, for example: native
cloud monitoring solutions (i.e., OpenStack Ceilometer) and
non-cloud monitoring solutions (i.e., Nagios, and MRTG).
This framework is able to automatically create monitoring
slices corresponding to the cloud infrastructure allocated in
OpenStack environment. However, the slicing concept in this
work is restricted to single clouds, leaving out of scope key
aspects such as multi-domain and heterogeneity of resources
(computing, network, storage).

The slice monitoring approach presented in [12] provides
an architecture for the monitoring of end-to-end slices and
a related software implementation that is specifically focused
on the DC slice parts. Whilst the paper discusses the need
of ensuring slice monitoring abstractions and the dynamic
instantiation of monitoring adapters, it does not address the
research problems arising from slice elasticity operations.

IV. ELASTIC MONITORING ARCHITECTURE

We propose an elastic monitoring architecture capable of
adding or removing monitoring components on-demand, as the
number of resources in a slice increases or decreases. This is
realized through the deployment of different slice monitoring
components across multiple administrative and technological
domains, transparently to the tenant. The proposed architecture
aims to provide an easy way to create, stop, update and
manage monitoring components for cloud network slices. The
architecture is generic enough to be capable of supporting
multiple monitoring entities, via technology-specific adapters
that are deployed in the different administrative domains where
the slice parts were instantiated.

Figure 2 presents the elastic monitoring architecture and
illustrates the interaction among its components. The figure
showcases two slices (one Health care slice and one Mobile
Broadband slice) being monitored. Coloured in green in Fig. 2
are the static components of the architecture: Engine Con-
troller (EC), Database (DB), and the Distribution Mechanism
(DM). These components are always present and operate

Slice
Orchestrator

Engine
Controller

DB

Infrastructure Provider A Infrastructure Provider B

ME

ME

ME

ME

HealthCare
Slice

Mobile
Broadband

Slice

Infrastructure Realm
Slice Provider Realm

 SP 1

SP 1

SP 2

SP 3

ME

SP

Legend
Monitoring

Entity
Slice
Part

HealthCare
Slice
Static

Components

Compute
Mobile

Broadband
Slice

ME SP 2

Adapter 3

Slice Provider

Network Storage

RM
Interface
MCO

Interface

Slice
Measurements

Aggregator

Slice
Measurements

Aggregator

Adapter 1 Adapter 2
Distribution
Mechanism Adapter 1 Adapter 2

Fig. 2: Elastic monitoring architecture for cloud network
slicing.

over multiple slices. The dynamic components – coloured in
blue and in red for each slice – are the Slice Measurements
Aggregator (SMA) and the Adapters. A set of these com-
ponents’ instances is (un)deployed and updated on-demand
(dynamically) per slice.

The Slice Orchestrator (shown in gray in the picture) acts
as the interface between our system and the Tenant, and
triggers monitoring operations through the Engine Controller.
For the sake of simplification, this component is out of the
scope of this work and will not be detailed hereafter. The
Engine Controller takes care of the monitoring process for
the whole infrastructure and reacts by adequately adapting
the monitoring subsystems on-the-fly, in accordance to the
elasticity operations on the cloud network slices, and in a
transparent way to the Tenant.

The Engine Controller is responsible for receiving requests
from the Slice Orchestrator and performing the corresponding
actions, such as deployment, decommissioning, update or re-
configuration of the monitoring components. The EC offers
four basic functionalities that are stated below and better
described in the next section.

• start monitoring – it deploys monitoring components dy-
namically (Slice Measurements Aggregator and Adapters)
in order to monitor a specific end-to-end slice;

• stop monitoring – it removes monitoring components
dynamically from a slice that has been decommissioned;

• update monitoring – it instantiates or removes Adapters
as elasticity operations are performed by the Slice Or-
chestrator;

• re-configure monitoring – it re-configures different
Adapters at run time, e.g., dynamic probe rate adaptation,
additional KPIs to be collected, temporarily switching off
the collection of measurements from a given probe.

The Slice Measurements Aggregator is a component

created on-demand and responsible for gathering monitoring
metrics related to a specific end-to-end slice from different
slice parts. In order to do that, it merges the different streams
of monitoring data (collected by the Adapters) and (re)encodes
them following a well-defined information model. The infor-
mation model defined for this work includes fields related to
slice and also related to the KPI being monitored. The data
fields are: KPI name, timestamp, value, and slice-related tags
such as slice ID, slice part ID, resource ID, and resource type
(e.g., VMs, containers, switches, routers).

The Adapters are instantiated on-demand to interact with
different Monitoring Entities (MEs) present in each slice part.
The main functionality of this component is to dynamically
collect the monitoring metrics for each slice part. More
specifically, the EC instantiates the Adapters on-demand to
collect metrics from all entities running in the end-to-end slice.
The Adapters are designed to provide a technology-specific
southbound interface toward the MEs they are bound to. This
interface will be used to pull metrics out of the slice part by
interacting with the particular ME which is running therein.
This can be seen through the dotted lines between the red
Adapters (1 and 2) towards the red Monitoring Entities in
each slice part. For the sake of visual clarity, in Fig. 2 we
omitted the arrows from the three blue Adapters towards the
blue Monitoring Entities for the Mobile Broadband Slice.

The metrics in each slice part are collected by local Mon-
itoring Entities (ME), i.e., monitoring tools instantiated by
different infrastructure providers. Each ME collects resource
metrics related to a given slice part. As examples of these
entities, we can mention well-known monitoring solutions
such as Nagios, Zabbix and SNMP. Open-source tools widely
used in the cloud computing environment are also good
examples, as Prometheus, Netdata, Ceilometer, among others.

The Distribution Mechanism is responsible for receiving
the metrics collected by the Adapters and distributing them
to specific SMAs, corresponding to individual slices. The
Distribution Mechanism can be seen as an abstracted way
to represent different data distribution technologies/approaches
such as push/pull, publish/subscribe, etc.

The Database is responsible for storing all the metrics
collected from the different end-to-end slices. The Orchestrator
in the Slice Provider will then use those metrics in order to
trigger the orchestration operations (e.g. elasticity).

Two types of interfaces can be identified in Fig. 2 based on
control-oriented versus data-oriented information flows:

• Monitoring Control and Orchestration (MCO): this inter-
face is used between the Slice Orchestrator, EC, SMAs,
Adapters, and DB for deploy, remove, update and re-
configure the monitoring components.

• Resource Monitoring (RM): this interface is defined be-
tween the SMA, Adapters, DM, and DB to send real-time
data collected by the MEs through the Adapters, all the
way to the DB by using the DM and the SMA. After
processing the collected data, Slice Key Performance
Indicators (KPIs) are derived.

Slice
Orchestrator

Engine
Controller

DB Slice
Measurements

Aggregator

Slice
Measurements

Aggregator

Adapter 1 Adapter 2

Infrastructure Provider A Infrastructure Provider B

Adapter 3

ME

ME

ME ME

ME

HealthCare
Slice

Mobile
Broadband

Slice

1

2

3

6

SP 1

SP 1

SP 2

SP 2

SP 3

A Horizontal Elasticity adding the
SP 3 to the Healthcare Slice

Vertical Elasticity

ME

SP

Monitoring
Entity

Slice Part

HealthCare
Slice

Static
Components Resources

Mobile
Broadband

Slice

Horizontal
Elasticity

Adapter 1 Adapter 2

Distribution
Mechanism

4

5

RM
Interface

MCO
Interface

Netdata

Prometheus

RabbitMQ

Infrastructure Realm
Slice Provider Realm

Legend

Fig. 3: Workflow of the update monitoring for elasticity events.

V. IMPLEMENTATION AND FUNCTIONAL WORKFLOWS

We now turn the attention to the implementation aspects
of the proposed architecture. The software modules were
developed in Python 3.7, and the communication interfaces
were developed as REST APIs. We use the queue system
RabbitMQ to distribute the metrics from the Adapters to the
SMA. The InfluxDB time series database is used to store the
different metrics collected from each end-to-end slice. In order
to dynamically deploy and manage all the elements of the
required monitoring system, each slice has its unique set of
components (SMA and Adapters), as illustrated by the red and
blue components in Fig. 2.

Following a micro-services approach, SMA and Adapters
are instantiated inside Docker containers and run as processes.
Having a containerized implementation, we benefit from the
natural features of containers such as: (i) every slice has
its own set of isolated monitoring components as shown in
Fig. 2, (ii) the deployment of new adapters does not affect the
already running components, and (iii) slice elasticity (vertical
and horizontal) is transparently supported by adding/removing
containers (adapters).

A. Update monitoring

Upon elasticity events, the update monitoring workflows are
executed. Fig. 3 shows the scale up/out processes for both
vertical and horizontal elasticity actions. Note that the only
type of elasticity that affects the monitoring system in place is
the horizontal one. The vertical elasticity is transparent for the
Adapters because, despite changing the amount of (computing,
network or storage) resources, the number of slice parts stays
the same. So, the ME is responsible for recognizing the new
resources dynamically and to expose them back to the Adapter.
This is depicted in Fig. 3 when new resources (in orange)
are added to Slice Part 1 of the Mobile Broadband (MBB)
Slice. In this case, the number of monitoring components in the

Slice Provider remains the same, and the associated Adapter
will be able to propagate all the new metrics for that slice
part transparently. However, when a new slice part is added
(in yellow) following an horizontal elasticity process, a new
Adapter needs to be deployed as described next (see Fig. 3).

The horizontal elasticity scale out process starts in Step 1
when the Slice Orchestrator communicates with the EC and
sends a YAML file with the characteristics of each new slice
part that was instantiated. After this, the EC instantiates the
required Adapters by using containers, and configures them to
communicate with their corresponding MEs. As per Step 2,
for each new slice part, a new Adapter is also instantiated.
In Step 3 of this particular example, Adapter 3 is able to
communicate with the ME and collect monitoring metrics for
the new Slice Part 3. It is worth noting that the SMA does not
need any changes when this elasticity process occurs. Steps 4,
5, and 6 share the same descriptions as steps 5, 6 and 7
from the start monitoring process, respectively. In Step 4, the
new Adapters send metrics via the Distribution Mechanism. In
Steps 5 and 6, the SMA automatically recognizes the newly
produced metrics and stores them in the DB, which can be
accessed by the Slice Orchestrator for resource management
and orchestration tasks, including SLA re-assessment. In the
case of an horizontal elasticity scale-down processes, the
instantiated Adapters are removed by the EC as described in
Sec. IV.

VI. EXPERIMENTAL EVALUATION

This section describes the experiments performed to evalu-
ate the architecture implementation. We aim at evaluating the
performance of the proposed architecture when instantiating
and removing monitoring components as slices are created,
removed, or scaled out/in.

As such, we analyze the following aspects: (i) the time
required to scale out/in the monitoring components when
increasing the number of slice parts; (ii) the impact of in-
stantiating/removing one slice by varying the number of met-
rics being monitored in an environment comprising multiple
slices; (iii) the time between adding the metrics in RabbitMQ
until they are inserted into the database, varying the number
of slices and monitored metrics.

A. Testbed

The setup used for the evaluation is composed by two
physical machines (Intel® Xeon® CPU D-1518 2.20GHz,
64 GB RAM, 2 TB HD). We instantiated a set of VMs
for representing the end-to-end slices. The servers act as
the infrastructure providers and have one slice part with two
VMs each. The monitoring tools used in each slice part are
Prometheus and Netdata, respectively. In order to represent
the slice provider, we deployed the monitoring components in
one HP desktop workstation, assembling a second-generation
Intel i7 processor 3.40GHz, 32 GB of RAM and 1 Terabyte
HD. This workstation was responsible for instantiating and
managing the monitoring components (SMAs and Adapters)
for all slices, as well as the Engine Controller, the Database,

and the Distribution Mechanism. All tests were performed 30
times, and the metrics polling interval was set to 10 seconds.

B. Impact of the number of Slice Parts

The purpose of this graph is: (i) to show the average time
scale in and scale out methods, by varying the number of
slice parts; (ii) to evaluate if the adapter (Prometheus or
Netdata) has a significant impact on the execution time of these
methods. For this evaluation, the Prometheus and Netdata
Adapters are monitoring 16 metrics per slice part.

Fig. 4 illustrates the average time to perform the scale in and
scale out methods, by also varying the number of slice parts
being added or deleted (1 to 100 slice parts). In other words,
Fig. 4 represents the time related to instantiate/remove only
the Adapters that were requested by the Slice Orchestrator in
response to an elasticity operation. In the x-axis, the reader
will see labels such as sp50, which means the creation of one
slice with 50 slice parts.

We can observe that the type of adapter (Prometheus or
Netdata) does not impact the execution time of the described
methods, since the obtained values were very close in all
graphs. Regarding the performance of the architecture, we
noticed that the average time to instantiating the monitoring
components in the Method Scale In with 100 slice parts (label
sp100) was 105 seconds as can be seen in the Fig. 4, which
results in ≈ 1 second per slice part.

Method Scale In Method Scale Out

sp1 sp10
sp25

sp50
sp100

sp1 sp10
sp25

sp50
sp100

2

4

8

16

32

64

128

Number of Slice Parts

T
im

e
 (

s
)

Fig. 4: Impact of the number of Slice Parts scale in and scale
out methods.

C. Impact of the number of Slices

The purpose of this analysis is: (i) to show the impact of
instantiating a new slice with just one slice part in environ-
ments that are already monitoring a set of slices; (ii) to analyze
whether the number of metrics being monitored in new slices
influences the start/stop times.

Figure 5 illustrates the execution time for the start/stop
monitoring methods. In these graphs, we are evaluating the
impact of starting/stopping a new slice, with just one slice
part, in scenarios where the number of slices already being
monitored increases according to the following values: 1, 5,
10, 25, 50, and 100 slices. Each of these already deployed

m10 m100 m1000 m10000

M
e
th

o
d
 S

ta
rt

M
e
th

o
d
 S

to
p

s1 s5 s10
s25

s50
s100

s1 s5 s10
s25

s50
s100

s1 s5 s10
s25

s50
s100

s1 s5 s10
s25

s50
s100

8

16

4

8

Number of Slices

T
im

e
 (

s
)

Slices
s1

s5

s10

s25

s50

s100

Fig. 5: Average time to run the start and stop methods in
overloaded scenarios.

slices has 2 slice parts monitored by Prometheus. In order to
carry out the second analysis (ii), we changed the number of
metrics being monitored by the new instantiated or removed
slice according to the following values: 10, 100, 1000, and
10000, (labeled respectively m10, m100, m1000 and m10000).

The number of metrics being monitored in the new in-
stantiated/removed slice did not impact the obtained results,
i.e., the time to create/delete components in the proposed
architecture does not change, even in scenarios where the
number of metrics being monitored increases considerably.
However, as the number of slices being monitored increases,
the time to instantiate/remove a new slice monitoring system
can also increases considerably, depending on how overloaded
the environment is. For example, the time to start a single-
slice-part slice in an environment with only one slice already
deployed (label s1 in red) was close to 5 seconds, regardless
the number of monitored metrics. On the other hand, to create
the same slice in an environment that is already monitoring
100 slices (label s100 in pink), the average time has increased
to about 15 seconds in all cases shown in Fig. 5. The stop
method has a similar behavior.

D. Impact of the number of Metrics

The analysis presented in this subsection aims to show the
average execution time to follow the steps 4, 5 and 6 presented
in Fig. 3, Section V. These steps comprise the time required
by the Adapter to add the monitored metrics (according to the
proposed information model), to publish them to RabbitMQ,
and finally for the SMA to consume and add them to the
database. In this analysis, as the previous one, we analyze the
impact of this time on overloaded environments, by varying the
number of slices already being monitored in the environment,
as well as the number of monitored metrics in the new
instantiated slice.

Figure 6 shows the time taken to process metrics until they
are inserted into the database, following the same information
model described in Section IV. The time increases as the
number of metrics being monitored also grows. Thus, to
process and store 10000 metrics (label m10000) in a single-

0.00

0.25

0.50

0.75

s1 s5 s10 s25 s50 s100

Number of Slices

T
im

e
 (

s
)

Metrics m10 m100 m1000 m10000

Fig. 6: Impact of number of metrics in overloaded scenarios.

slice environment (label s1), it takes 0.48s on average, while
the time to process and store the same amount of metrics in
an 100-slice environment is 0.88s on average.

Therefore, given the results of this subsection and the
previous one, we can conclude that the number of metrics does
not influence the time to start or stop monitoring components
of a slice, even in overloaded environments. On the other hand,
the time to process metrics in overloaded environments raises
as we increase the number of metrics being processed.

VII. CONCLUSIONS AND FUTURE WORK

The realization of cloud network slicing poses many dif-
ferent challenges. In this work, we make a step forward on
the monitoring aspects by proposing an elastic monitoring
architecture that can uniformly collect metrics from the com-
puting, networking and storage components of dynamic end-
to-end slices. The main features of this architecture relate to
its ability to instantiate/remove the monitoring components as
slices or slice parts are created, removed and updated, also
dealing with scenarios that consist of multiple administrative
and technological domains.

The next steps include the evaluation of the resource uti-
lization related to the deployed monitoring components, as
well as the implementation and testing of the reconfiguration
functions of both the SMA and the Adapters. We are also
planning to monitor the services instantiated across the slices
and integrate the proposed monitoring architecture with a
real slice orchestrator developed within the NECOS project1

capable of making intelligent decisions (e.g., resource/service
allocation, slices/services elasticity, SLA violation predictions)
based on the infrastructure and services metrics.

ACKNOWLEDGMENT

Work funded through the H2020 4th EU-BR Collaborative
Call, under the grant agreement no. 777067 (NECOS - Novel
Enablers for Cloud Slicing).

1http://www.h2020-necos.eu.

REFERENCES

[1] S. Clayman, “D3.1: NECOS System Architecture and Platform
Specification. V1,” Tech. Rep., 10 2018. [Online]. Available:
http://www.h2020-necos.eu/documents/deliverables/

[2] R. V. Rosa and C. E. Rothenberg, “The pandora of network slicing: A
multicriteria analysis,” Transactions on Emerging Telecommunications
Technologies, vol. 0, no. 0, p. e3651, e3651 ett.3651. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3651

[3] P. D. Maciel Jr., F. L. Verdi, P. Valsamas, I. Sakellariou, L. Mamatas,
S. Petridou, P. Papadimitriou, D. Moura, A. I. Swapna, B. Pinheiro,
and S. Clayman, “A marketplace-based approach to cloud network slice
composition across multiple domains,” in 2019 IEEE Conference on
Network Softwarization (NetSoft), June 2019, pp. 480–488.

[4] X. de Foy and A. Rahman, “Network Slicing - 3GPP Use
Case,” Working Draft, IETF Secretariat, Internet-Draft draft-
defoy-netslices-3gpp-network-slicing-02, October 2017. [Online].
Available: http://www.ietf.org/internet-drafts/draft-defoy-netslices-3gpp-
network-slicing-02.txt

[5] ETSI ISG NFV, “GR NFV-IFA 022 - V3.1.1 - Network
Functions Virtualisation (NFV) Release 3; Management and
Orchestration; Report on Management and Connectivity for Multi-Site
Services,” ETSI ISG NFV, Tech. Rep., 2018. [Online]. Available:
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

[6] NGMN Alliance, “5G End-to-End Architecture Framework
v2.0,” NGMN Alliance, Tech. Rep., 2018. [Online]. Available:
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/
2018/180226 NGMN E2EArchFramework v2.0.0.pdf

[7] A. Medeiros, A. Neto, S. Sampaio, R. Pasquini, and J. Baliosian,
“End-to-end elasticity control of cloud-network slices,” Internet
Technology Letters, vol. 2, no. 4, p. e106, 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/itl2.106

[8] ONF, “TR-526: Applying SDN Architecture to
5G Slicing,” Tech. Rep., 2016. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/Applying SDN Architecture to 5G
Slicing TR-526.pdf

[9] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and
T. Lynn, “A survey of cloud monitoring tools: Taxonomy, capabilities
and objectives,” Journal of Parallel and Distributed Computing,
vol. 74, no. 10, pp. 2918 – 2933, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001099

[10] S. Kuklinski and L. Tomaszewski, “Dasmo: A scalable approach to
network slices management and orchestration,” NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Symposium, pp. 1–6,
2018.

[11] M. B. de Carvalho, R. P. Esteves, G. da Cunha Rodrigues, L. Z.
Granville, and L. M. R. Tarouco, “A cloud monitoring framework
for self-configured monitoring slices based on multiple tools,” in Pro-
ceedings of the 9th International Conference on Network and Service
Management (CNSM 2013), Oct 2013, pp. 180–184.

[12] F. Tusa, S. Clayman, and A. Galis, “Dynamic Monitoring of Data Center
Slices,” in 5th IEEE International Conference on Network Softwarization
(NetSoft 2019). IEEE, 2019, pp. 1–7.

