
Inferring Cloud-Network Slice’s Requirements from
Non-Structured Service Description

Rafael Pasquini∗, Javier Baliosian†‡, Joan Serrat‡, Juan-Luis Gorricho‡, Augusto Neto§¶ and Fábio Verdi‖
∗ Federal University of Uberlândia (UFU), Uberlândia, Brazil – Email: rafael.pasquini@ufu.br
† Universidad de la República (UdelaR), Montevideo, Uruguay – Email: baliosian@fing.edu.uy

‡ Universitat Politècnica de Catalunya (UPC), Barcelona, Spain – Email: {joan.serrat, juanluis}@entel.upc.edu
§ Federal University of Rio Grande do Norte (UFRN), Natal, Brazil – Email: augusto@dimap.ufrn.br

¶ Instituto de Telecomunicações (IT), Aveiro, Portugal
‖ Federal University of São Carlos (UFSCar), Sorocaba, Brazil – Email: verdi@ufscar.br

Abstract—To support future 5G computing and communica-
tion scenarios, cloud-network management tools should deploy
cloud-network services adopting uncomplicated ways, reducing
not only the time to market but also broadening the community
capable of deploying new services. In this paper, we present the
support of NECOS Platform, an EU-Brazil jointly funded project,
towards slice-as-a-service creation from non-structured service
description. We describe how NECOS architecture allows such
functionality during the slice creation loop, and we present the
initial efforts we took for structuring such a mechanism.

Index Terms—Cloud-networks, Natural Language Processing,
Cloud-network Slicing.

I. INTRODUCTION

The advances in new technologies should allow ever-
growing access to the most recent Internet and cloud services.
In order to support future scenarios, such as industry 4.0, the
deployment of services should be done in an uncomplicated
manner, reducing not only the time to market, but also broad-
ening the community capable of creating such new services.

The NECOS project is devoted to design and implement a
cloud-network slice platform to automate via software com-
ponents the entire slice-as-a-service process across multiple-
administrative domains. It defines different slice request
possibilities, ranging from a detailed-resources-requirement-
description up to an abstract-service-description.

Currently, the community around cloud-network environ-
ments is mainly composed of experts, capable of precisely
describing what the required resources to offer a given service
are. As a next step, such environment needs to strive for less-
detail-demanding support, as the abstract-service-description
effort present in NECOS. This has the potential to ease the
inclusion of other communities to the cloud-network environ-
ment, fostering concepts like pay-as-you-go and elasticity.

In this paper, we present the NECOS’ work towards slice-as-
a-service creation from non-structured service description. The
objective is to describe how NECOS includes such possibility
in the slice creation loop. Also, we will present the initial
efforts taken for structuring such a mechanism. In practical
terms, there is a module in NECOS named Slice Specification
Processor (SSP), and we present a proposal for its deployment

based upon Structured Output Learning [1], a machine learning
umbrella to infer dependencies in between arbitrary inputs and
outputs. The ultimate goal is to allow a NECOS tenant to place
a slice request describing key aspects of its service and, at the
end of the process, to receive its slice up and running.

II. RELATED WORK

The work presented in [2] introduces a novel intent-
refinement process that uses machine learning and feedback
from the operator to translate the operator’s utterances into
network configurations. As pointed out by the authors, the
accuracy of the learning mechanism depends on the universe
of different technologies to which natural language shall be
mapped. In this way, they propose Nile, an intent definition
language close to natural language. It exhibits structural flex-
ibility that works well as the target for the learning algorithm
and allows translation to different target networks. By using
a user-friendly chat, the user can use natural language to
specify requests to its network, for example, “add firewall
and intrusion detection from gateway to backend for client B,
with latency less than 10 ms and 100 Mbps of bandwidth, and
allow HTTPS only, everyday from 09:00 to 18:00”.

It is also true that current efforts on translating natural
language or at least very high-level descriptions of a networked
service to technology-dependant configurations are not the
first ones. The idea of “refining” business objectives written
in almost natural language existed since the beginning of
the policy-based management research. For example, [3] and
[4], are related to our proposal. The authors in [3] present
an approach to policy refinement that allows the inference
of the low-level operations that satisfy a high-level goal by
making use of existing techniques in goal-based requirements
elaboration and the Event Calculus [5]. They show that the
formal representation of a system, can be used together with
abductive reasoning techniques [6] to infer a sequence of
events that need to occur to reach a desired goal.

III. OVERVIEW OF NECOS PROJECT

This section briefly introduces the main NECOS Architec-
tural subsystems and modules used during the provision of a
new slice to a tenant. It also details the NECOS Information978-1-7281-4973-820$31.00 c© 2020 IEEE

Fig. 1. NECOS Architectural subsystems and modules required to support the slice-as-a-service paradigm.

Model and the APIs (Client-to-Cloud and Cloud-to-Cloud)
required to support a slice request.

A. Key NECOS Architectural Subsystems and Modules

The NECOS system architecture is designed to provide
slices under a new paradigm defined as slice-as-a-service.
Slices are provided across a shared infrastructure of different
administrative domains in a federation. The slices are orches-
trated by NECOS to fulfill on-demand end-to-end service level
agreements (SLAs) [7].

There are four subsystems defined in the NECOS archi-
tecture: Tenant’s Domain; Slice Provider; Marketplace; and
Infrastructure Providers. All these subsystems support the
proposed slice-as-a-service paradigm of NECOS, offering on-
demand slices to tenants. Figure 1 depicts a subset of the
NECOS Architecture, in which the four subsystems along
with the modules for slice creation are highlighted. The full
architectural description, with all modules can be found in [7].
In the sequence, each subsystem is briefly described:
• Tenant’s Domain: In order to have a slice, the tenant

may provide the description in three formats: (i) fully-
described low-level specification of the slice, focusing on
resource aspects; (ii) a slice requirements specification; or
(iii) a service specification;

• Slice Provider: The entrance domain (cloud or network
operator) to which the tenant presents its slice request;

• Marketplace: It is a subsystem in which all domains,
part of a NECOS federation, can advertise the resources
they can provide. The service provider (entrance domain)
will consult the marketplace to find the options available
in the federation to create the requested slices;

• Infrastructure Providers: All domains in a given
NECOS federation. Such domains offer resources to
compose slices under the slice-as-a-service paradigm pro-
posed in the NECOS project. Examples include network
operators, core cloud and edge cloud providers.

Figure 1 also depicts key NECOS modules for slice creation.
Such components are briefly described as follows:
• Slice Activator: Located at Tenant’s Domain, it is

responsible to inject the slice specification (low-level
or high-level description) from the tenant towards the
NECOS Slice Provider;

• Slice Specification Processor: It admits the slice descrip-
tion at the Slice Provider. The main role of this module
relates to translating abstract slice descriptions to actual
infrastructure resources. This module delivers a Partially
Defined Template (PDT) message to the Slice Builder.
This message defines the requirements for the new slice,
but does not indicate to which infrastructure providers the
resources are associated;

• Slice Builder: As the name suggests, it builds the slices.
In order to do it, the Slice Builder communicates with
the Marketplace using the Cloud-to-Cloud API to gather
options for the slice provision. By receiving a Slice
Resource Alternatives (SRA) message from the Market-
place, the Slice Builder defines the best arrangement for
the new slice;

• Slice Broker: Located at the Marketplace, its responsi-
bility is to create the inventory of resources available in
the federation by interacting with Data Centers and WAN
Slice Agents;

• Slice Agents: Located at Infrastructure Providers, they
perform internal inventories of resources and expose them
in the Marketplace using the NECOS Information Model;

B. NECOS Information Model

The NECOS Information Model provides a way to describe
(i) all infrastructure resources with their properties, and (ii) the
slice components and service elements that could be deployed
within slices. A thorough description of it can be found in [8].

The NECOS information model aims at capturing the main
resource and network elements available in datacenter and

2

transport networks. To this aim, main entities represented
in the model are: Infrastructure, Domain, Network Element,
Router, Switch, Access Point, Host, CPU, Controller, Link,
Port, Queue and Path.

Each entity has a set of attributes. As an example, the
Host entity has the following properties: Host ID, Hostname,
Availability, Location, CPU, Memory, Storage, Number of
ports, Monitoring parameters for the host, other service-
specific host capabilities (energy-measurement hardware, SAS
disks optimized for storage nodes, etc.).

A Fully-Described Low-Level Slice Specification presented
by a tenant is generated in conformance with the NECOS
Information Model. On the other hand, abstract slice descrip-
tions are mapped to the NECOS Information Model by the
Slice Specification Processor module.

IV. MAPPING FROM ABSTRACT SERVICE DESCRIPTIONS
TO SLICE’S INFRASTRUCTURE REQUIREMENTS

In this section, we present the problem statement and briefly
introduce the background required to support it. Figure 2
illustrates the overall scenario investigated in this paper. As can
be seen, the process starts with a tenant providing a service
description to our learning mechanism, using abstract (non-
infrastructure-specific) information. The learning mechanism
implements a function f(x), capable of predicting structured
descriptions of infrastructure requirements for new slices.

Fig. 2. Learning infrastructure requirements for new slices based upon abstract
service descriptions provided by tenants.

In order to tackle this challenge, we leverage the concepts of
Structured Output Learning (SOL) [1], a supervised learning
umbrella usefull for inferring functional dependencies between
arbitrary input and output domains. Rather than predicting
discrete elements or real numbers, SOL predicts structured
objects that must satisfy rules/constraints specified in its
domain. The basic definition of the problem addressed by this
work is stated in the following equation:

ŷ = argmax
y∈Y

f(x, y)

Where x is the input information, Y is the set of all possible
outputs and f(x, y) is a compatibility function to evaluate how
accurate is the fit of y to x. The prediction ŷ is the element of
set Y , output of the trained model, that better fits x. Therefore,
the objective is to find a model M : xi → ŷi, such that ŷi
closely approximates yi for a given xi request.

Although Y is finite, it can be very large, making unfeasible
the adoption of classifiers and other techniques that exhaus-
tively try different values for y. Common techniques adopted
in the literature, and also currently available in tools like
PyStruct [9], include energy functions or conditional random
fields (CRFs) for building f(x, y) [10].

A. An example of mapping

Suppose that a logistics industry needs to perform asset
tracking. With asset tracking an enterprise should be able
to easily locate and monitor key assets such as materials,
products, or containers, in order to optimize logistics, maintain
inventory levels, monitor quality and detect theft.

Although it may be a large tenant, a maritime shipping com-
pany, for example, may not want to get into the technological
implementation details of a cloud-network slice that supports
its assets IoT-based tracking systems. Sensors may help to
track the location of a ship at sea, and they can provide the
status and temperature of cargo containers. So the shipping
company may want to describe its slicing needs as follows:

Provide a cloud-network slice to serve an asset-tracking
service. The service must run on the ports of Barcelona,
Thessaloniki and Santos. The service must automatically
adapt to the demand which will change depending on
the time of the year. It is expected to track around
50,000 containers at the same time, with peaks of
80,000 at a frequency of 12 samples per minute. The
collected data must be stored inside European Union.
Information system’s availability should be 99.998%,
and data collection availability must be 99.9% as a
minimum. Queries to the data, from any city, should
have a response time of 100ms or less and will occur
at a peak rate of 20 per minute.

To translate those requirements into a structured slice-
requirement, i.e., a PDT message, the mapping process has to
perform several tasks. They will be described with more detail
in the next section, but in a sketchy way they are: i) to identify
the service (or services) to be provided, ii) to determine the
expected workload, and iii) to identify the constraints.

Each of these tasks may have different sub-tasks, some of
them regarding quite different domains. The identification of
the service is not a complicated task. Once the service is
recognized from the description, it should be matched against
known services setups and its particular requirements on CPU,
memory, storage, and network must be identified.

Then, the service’s workload has to be understood. This case
might be more complicated. It is not so easy to verify if the
workload characterizing the service relates to the number of
shipping containers to track, or the query rate that the database
has to manage. In this case, we can say that the workload is
mainly given by the number of tracked shipping containers
per time unit, but it is not so clear from the point of view of
an automatic text processing algorithm.

Finally, service constraints have to be identified: geo-
graphical restrictions –in this case the mentioned cities and
ports–, service-performance constraints –response time for
the queries–, and availability for the data collection and
information subsystem. NECOS will, then, create a high-level
specification like the one in Figure 4. There, we just depict a
fragment of the specification (the complete one is too long for
this paper), but it provides an idea of how natural language

3

Fig. 3. Example for mapping tenant’s inputs into slice descriptions using information forms structured in three fields.

...

slice-constraints:
geographic:

continent:
country:
city: [Barcelona, Thessaloniki, Santos]
dc-slice-parts: 3
net-slice-parts: 2

slice-requirements:
elasticity: true

target:
service_metric: query_response_time
value: {lower_than_equal: 100ms}

reliability:
enabled: true
value: logical-backup

service:
service-function:

service-type: dojot
...

Fig. 4. Fragment of the high-level YAML-based slice specification.

expressions such as “Queries to the data, from any city, should
have a response time of 100ms or less”.

V. EXEMPLIFICATION OF USAGE

In order to allow tenants to provide service descriptions
using natural language, our proposal is to adopt Recurrent
Neural Networks (RNN). RNNs are a family of neural net-
works for processing sequential data. Its connections between
nodes form a directed graph along a chain. This allows to
display a temporary dynamic behavior during a time sequence.
Unlike neural feedback networks, RNNs use their internal state
to process input sequences. This has made them successful on
tasks such as handwriting or voice recognition. RNNs have
been successful, for example, in the learning sequence and
tree structures in natural language processing. This success
makes them an obvious candidate to pursue our goal.

An exemplification on how to adopt RNNs to instantiate our
proposal of Figure 2 is depicted in Figure 3. Basically, tenants
can provide information using, for example, input forms. In
Figure 3, tenants provide information structured in three fields.

The first field receives information, using natural language,
that describes the service requested by the tenants. The tenant
can also select a service among options in a combo list.
The combo selection goes directly to a service description,
while textual information passes through a RNN to identify
the service requested by the tenant.

The second field receives information that describes all
connectivity/geographic aspects of the requested slice. Such
information passes through a second RNN, trained to translate
such aspects of the request into connectivity description.

The third field receives information that describes load
aspects of the requested slice. Such information passes through
another RNN, trained, in this case, to translate such aspects
into load description.

The treatment of information by RNNs can be seen as a first
phase within SSP. The outputs of this phase is then used as a
controlled input towards a second phase, in which, for example
Structured Output Learning mechanism described earlier is
instantiated. SOL translates such controlled input of first SSP
phase into PDT messages of NECOS. The first phase can be
seen as a way of taming the complexity of such translation.

VI. CONCLUSIONS AND FUTURE WORK

This work presented a proposal for mapping high-level
service description to low-level infrastructure resources in
NECOS Project. Such mapping is challenging and gained
strong attention to attend the raising of new services to be de-
ployed over 5G. The approach introduced in this paper is based
on the Structured Output Learning (SOL) and RNNs, that
when used together, are capable of dealing with dependencies
between arbitrary inputs and outputs. We are instantiating this
proposal in the NECOS Project, specifically for implementing
the Slice Specification Processor (SSP) module.

ACKNOWLEDGEMENTS

This research was supported by the H2020 4th EU-BR
Collaborative Call (Grant Agreement no. 777067 – Novel
Enablers for Cloud Slicing).

4

REFERENCES

[1] G. BakIr, T. Hofmann, B. Schölkopf, A. J. Smola, and B. Taskar,
Predicting structured data. MIT press, 2007.

[2] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville,
“Refining network intents for self-driving networks,” in Proceedings of
the Afternoon Workshop on Self-Driving Networks, 2018, pp. 15–21.

[3] A. K. Bandara, E. C. Lupu, J. Moffett, and A. Russo, “A goal-based
approach to policy refinement,” in Proceedings. Fifth IEEE International
Workshop on Policies for Distributed Systems and Networks, June 2004,
pp. 229–239.

[4] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, and G. Pavlou,
“A methodological approach toward the refinement problem in policy-
based management systems,” IEEE Communications Magazine, vol. 44,
no. 10, pp. 60–68, Oct 2006.

[5] R. Kowalski and M. Sergot, “A logic-based calculus of events,” New
Generation Computing, vol. 4, no. 1, pp. 67–95, 1986.

[6] G. Paul, “Approaches to abductive reasoning: an overview,” Artificial
Intelligence Review, vol. 7, no. 2, pp. 109–152, Apr 1993.

[7] NECOS Deliverable D3.1: NECOS System Architecture and Platform
Specification, 2018 (accessed December 20, 2018). [Online]. Available:
http://www.h2020-necos.eu/documents/deliverables/

[8] NECOS Deliverable D4.1: Provisional API and Information Model
Specification, 2018 (accessed December 20, 2018). [Online]. Available:
http://www.h2020-necos.eu/documents/deliverables/

[9] A. C. Müller and S. Behnke, “pystruct - learning structured prediction in
python,” Journal of Machine Learning Research, vol. 15, pp. 2055–2060,
2014. [Online]. Available: http://jmlr.org/papers/v15/mueller14a.html

[10] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” 2001.

5

