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Abstract The Internet is a crucial infrastructure for the digital era of a fully con-
nected society. However, the design of the Internet’s protocols occurred several
decades ago based on entirely different assumptions, and this motivated several ini-
tiatives to propose the replacement of the TCP/IP protocol stack. Some of these
efforts are known as Future Internet Architectures (FIAs), and some examples of
these projects are RINA, MobilityFirst, XIA, CCNx, ETArch, and NovaGenesis.
Each architecture has its particular purpose and its own set of design goals, but
all of them try to advance several aspects related to the current Internet architec-
ture. Considering that these network architectures use disconnected assumptions,
their integration would be impossible. Nevertheless, a possible approach would be
the coexistence of a set of FIAs or even interconnection with the current Internet
architecture. This work presents the architecture of the Future Internet Exchange
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Point (FIXP), a software-defined infrastructure that will contribute to the deploy-
ment of future network architectures by leveraging the concept of current Internet
Exchange Points (IXPs). Using a P4 switch for the interconnections of the TCP/IP
and ETArch architectures, we implemented a FIXP proof of concept. Obtained re-
sults are promising for incoming data packets processing times, rule adding, and
flow completion times.

1 Introduction

The current Internet architecture employs different communication protocols and
its core is the same as four decades ago. The available technologies, computing
capabilities and assumptions for the design of these protocols were very different
from those we have today.

Some of today’s Internet limitations encompass multimedia applications that re-
quire network Quality of Service (QoS), seamless mobility across different access
networks, security, and multicast support for efficient content delivery. Another con-
cern is the recent rise of the Internet of Things (IoT), which presents scalability
challenges.

Several solutions to solve these and other limitations concerning to the TCP/IP
stack have been presented. Nevertheless, their deployments are challenging, and
raise issues regarding the management of a complex control plane.

Consequently, the need for a new network architecture for the Internet of the Fu-
ture has appeared since the late nineties, and this subject has caught the attention of
the network research community to date. For example, initiatives such as NewArch
[1], Future Internet Design (FIND) [2], Future Internet Architecture (FIA) [3], and
Future Internet Architecture Next Phase (FIA-NP) [4] indicate that this subject has
been in research since the beginning of this century in the United States. In Europe,
FP6, FP7, and H2020 framework programs have funded several projects that have
focused on new network architectures, and this topic will also be present in the FP9
framework program under the Next Generation Internet (NGI) initiative [5].

The current scenario concerning FIAs shows that there are several network ar-
chitectures with prototypes in different stages of implementation, different archi-
tectures with specific design goals and communication paradigms. Thus, it is not
possible to identify a unique network architecture that comes up as an answer and
address all the current Internet limitations. In this way, the quest for a single network
architecture capable of unifying the disconnected communication requirements, that
can support a new Internet, is a possible race. However, this search does not seem
to be the best approach.

This work considers that the best approach is to create the conditions for a Future
Internet where different network architectures will be interconnected and executed
in parallel in the same infrastructure. In this way, a right place for this intercon-
nection to take place is in a Future Internet Exchange Point (FIXP), which takes
advantage of the network’s softwarization tendencies, such as Software Defined
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Networking (SDN), Network Functions Virtualization (NFV) and more recently,
network programmability.

This article presents the design and implementation of FIXP, which consists of
a set of control plane components, as well as a protocol to program data plane P4-
capable switches. FIXP is entirely designed from scratch, using the capability of
modern network programmability features. In this paper, we present the FIXP com-
ponents which are agnostic about the Internet architecture it interconnects, which
means that it is easy to add interconnection support to new FIAs as long as they
appear.

We did an initial evaluation using two Internet architectures: ETArch [8], an
FIA representative, and the traditional TCP/IP (which will naturally co-exist for
a long time). The initial evaluation shows that the proposal is feasible, extensible,
and lightweight, and in line with current in-network solutions.

This work is organized as follows: firstly, Section 2 presents some background
and related work. Section 3 highlights the FIXP architecture, its components and
their functionalities. Section 4 presents FIXP implementation and evaluation. Fi-
nally, Section 5 concludes the paper and gives some future works.

2 Background and related work

The interconnection of different FIAs to enable the development of multi-architecture
applications presents several challenges. The first one is to define the approach to
interoperate and/or interconnect different FIAs. Machado et al. [11] presented a
taxonomy of possible solutions to combine FIAs and proposed a solution for map-
ping identifiers of other proposals to XIA. Nonetheless, such idea seems to require
a profound adaptation of other FIAs to be compatible with XIA. In Guimaraes et
al. [9], it is proposed a framework called Future Internet Fusion (FIFu) that aims
to unify existing and future network architectures for transparent interoperability
while gradually accommodating new networks. In this scope, a FIFu has an “adap-
tation layer”, in which several interoperable entities called Future Internet Exchange
Points (FIXP) emulate a connection endpoint and act as a gateway among architec-
tures, ensuring the interoperation among proposals. Through this hardware, it was
feasible to evaluate the premise under three different scenarios. These were a web
browsing application, having the Named-Data Networking (NDN) and PURSUIT
networks accessing IP web pages, a live video streaming, in which video is avail-
able through a multicast in the PURSUIT architecture for NDN and IP clients, and,
finally, the last is related with on-demand video, in which the same streamed video
of the second scenario was made available on-demand and split into multiple seg-
ments for IP and NDN clients.

The second challenge is related to the network hardware required to support the
FIXP. Some works, such as [10], proposed a Software Defined Internet Exchange
(SDX) to interconnect BGP traffic on the Internet. In this work, there are two sepa-
rate pipelines: (i) one that is called the Policy Compiler, receiving all participant in-
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puts, storing routing tables and routing via BGP-suggested routes; and (ii) the Route
Server, which emulates a default route server, receiving suggestions from BGP and
calculating the best forwarding route. Nonetheless, this work does not consider the
interconnection of different FIAs and it focuses only on the interconnection of BGP
WAN (TCP/IP) traffic using SDN-capable switches. On the other hand [9], FIFu is
based on the concepts of SDN and implemented through two distinct layers, which
enabled the interoperability among distinct architectures. In brief, these are the al-
ready mentioned “adaptation layer” and the “intelligent layer”, in which the control
functions for the adaptation layer are implemented, configured, managing and sup-
porting FIXP operations.

The third challenge concerns the architecture of FIXPs and its components. As a
consequence, all the components must be defined as well as the integration among
them. In addition, software-defined control is required to deal with unknown data
units according to each FIA and to properly configure new flows in the FIXP switch.
Moreover, this software-defined control can combine trends such as artificial intel-
ligence, machine learning or deep learning to enable smarter decisions while man-
aging a network topology through the SDN concept, which splits the data, or north-
bound, and control, or southbound, planes [12].

In this paper, we propose FIXP and its components, as well as the hardware de-
veloped to support the approach for interconnecting FIAs. Other challenges should
be faced as the FIXP evolves and is deployed.

3 Future Internet Exchange Point (FIXP)

FIXP aims to foster the deployment of new network architectures by enabling the in-
terconnection of physically separated networks, not only based on TCP/IP architec-
ture, but also in alternative architectures, allowing traffic exchanging among them.
The concepts of Software-Defined Networking (SDN), Network Functions Virtual-
ization (NFV) and Cloud Computing are the basis for the design of a FIXP. While
the Software Defined Exchange (SDX) [10] uses the notion of a software-based in-
frastructure for Internet traffic exchange, FIXP uses this notion to provide traffic
exchange among different FIAs deployed on various ISPs.

The ability to interconnect FIA domains creates the condition to do a large-scale
deployment of different proposals, allowing their use for various applications, fo-
cusing on what each architecture better offers to them. Interconnection is the crucial
feature that enabled Internet dawn and success, and considering that FIXP supports
the TCP/IP interconnection, its concept leverages existing IXPs.

The FIXP is the physical location where client Internet Service Providers (ISPs)
can connect to one or more provider ISPs, thus creating a network that can span over
the globe.

Figure 1 presents an overview of the FIXP concept. In this case, FIXP inter-
connects different administrative domains of different network architectures, such
as TCP/IP and other FIAs. Regarding TCP/IP, FIXP is comparable to the IXP func-
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Fig. 1: FIXP architecture overview.

tionality, and the traffic exchange happens by the interconnection of different routers
using the FIXP Infrastructure Layer that contains a fabric of P4 capable switches. In
this sense, FIXP is capable of exchanging traffic between two or more independent
Autonomous Systems, based on the TCP/IP architecture.

The interconnection, as seen in Figure 1, assumes that different domains have
a deployment of the same FIA. FIXP is responsible for receiving the packets from
that network, for identifying its architecture and for forwarding the data units to
the corresponding output FIA, according to its forwarding rules. The Control Layer
of the FIXP stores the control entities of each supported FIA that implements its
forwarding rules.

The FIXP protocol is responsible for the communication between the Infrastruc-
ture and Control layers. The Infrastructure layer receives the data and, if it contains
primitives of the control protocols of a supported network architecture, the FIXP
protocol encapsulates the primitive and forwards it to the Control layer. The FIXP
Abstraction Layer will inspect the control primitive and forward it to its correspond-
ing control entity.
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Fig. 2: Internal view of FIXP architecture.

3.1 FIXP Architecture

The subsection presents the FIXP architecture, its components and the primitives of
the FIXP protocol responsible for the internal communication.

Figure 2 details the FIXP architecture presenting its internal components. FIXP
encompasses a physical switching infrastructure, and, on top of that, a set of virtual-
ized network functions of each FIA. These functions are responsible for controlling
the FIXP switches taking into account the integration among different FIAs. A FIXP
Switch should be capable of switching different protocol data units (PDUs) used by
each network architecture. Thus, it should be capable of handling the different PDUs
at line rates. The set of software network functions supports the control plane of each
network architecture implemented by FIXP. These components are responsible for
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managing and controlling the interconnection rules between two or more different
domains. To simplify, Figure 2 presents only one physical switch.

The main modules of the FIXP architecture are the following:

• FIXP.P4 - This module contains the P4 language implementation that controls
the behavior of the switches. To support a new FIA, it is necessary to update the
code of this module.

• FIXP Rule Handle Service (FRHS) - This module runs inside the P4 switch and
modifies its internal tables. After this event, it sends a response to notify the status
of this modification.

• FIXP Switch Packet Handler (FSPH) - Handles the FIXP protocol primitives
that the P4 switch sends to the FIXP Abstraction Layer. The module inspects the
primitive data and forwards it to the corresponding network architecture control
entity in the Control Layer.

• FIXP Controller Packet Handler (FCPH) - This module is responsible for han-
dling the communication of the Control Layer with the infrastructure layer. This
module receives all the primitives sent by the Control Layer and forwards them to
the corresponding P4 switches of the Infrastructure Layer. In this sense, it hides
from network architecture the physical topology of the infrastructure layer.

The communication between these components uses the FIXP protocol primi-
tives. For simplicity, we will only describe their vocabulary and their service without
presenting their format. Below we define these primitives:

• FIXP-PACKET-IN (FPI) - This primitive contains in its payload the data received
by the P4 switch in its ingress port. It also contains p4 switches metadata neces-
sary for the proper handling by the upper layers, such as ingress port.

• FIXP-PACKET-OUT (FPO) - The payload of this primitive is a response that a
network architecture needs to send to the infrastructure layer after the occurrence
of a FPI event. It contains the egress port and the p4 switch where this response
should be forwarded.

• FIXP-FLOW-MOD-REQUEST (FFMREQ) - This primitive contains the data
necessary to update the match tables of the P4 switches such as table names,
match keys related to the network architecture that requested the operation.

• FIXP-FLOW-MOD-RESPONSE (FFMRES) - This primitive contains informa-
tion about the status of a FFMREQ such as success or failure.

When a PDU arrives, the FIXP.P4 module parses the data and identifies which
is the corresponding architecture. Every architecture has its match tables, and if no
match is found, then a FPI) event occurs. The FPI) encapsulates this PDU. The
switch sends the FPI to the FSPH.

The FSPH forwards theFPI to the corresponding control entity in the FIXP Con-
trol Layer. In the control layer, the right control entity, associated with the network
architecture, receives the FPI and provides the behavior associated with that archi-
tecture. In an SDN based architecture, the control entity would be a Controller, and
in the TCP/IP architecture, it would be a Router.
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The response of a FPI is an FPO primitive. The control entity encapsulates the
response in an FPO and forwards the FPO to the FCPH. The FCPH finally for-
wards the FPO to the P4 switches. The Control layer generates a FPO to each FPI
received.

The Control Layer can also generate a FFMREQ. In this case, the control layer
forwards the FFMREQ to the FCPH in order to modify the P4 switches behavior.
The FCPH finally forwards the FPO to the P4 switches. When this happens, the
FRHS generates a FFMRES that is received by the FPSH which finally forwards it
to the corresponding network architecture control entity in the Control Layer.

After this operation, the P4 switch is ready to handle data plane communication,
and, in this case, the switch only forwards the data between ingress ports and egress
ports according to the forwarding rules of the switches in the Infrastructure layer.

Considering that these primitives belong to different network architectures, one
design goal of the FIXP protocol was that it should work independently of the net-
work architecture. To add support to new network architecture, the only module that
needs an update is the FIXP.P4 to configure the architecture-related information
such as match tables and headers. Also, it is necessary to add to the Control Layer
the new control entity of this new architecture.

4 FIXP implementation and Proof-of-Concept evaluation

As seen in Figure 2, the FIXP implementation consists of several elements, in-
cluding a set of switches, an abstraction layer and the controllers. Inside every
FIXP switch there are two main applications being executed: the P4 switch code
(FIXP.P4) and the FRHS (presented in Subsection 3.1).

The SDN switch was developed using the P4 packet processing language. It has
three main functional sections and follows the traditional P4 pipeline flow: a parser,
which receives the packets, extracts Ethernet frames and other protocols and per-
forms the architecture identification of the received packet by analyzing the ether-
type field from the Ethernet protocol; an ingress section, which defines the packet
forwarding tables with the key fields used in the routing rules and the implementa-
tion of the forwarding actions for each of the defined FIAs; and, finally, a deparser
section, which reassembles the protocol fields on the packets to forward to the cor-
rect switch port.

FRHS is an application implemented in Python using the Scapy library, which
listens the network interface port connected to the FIXP Abstraction Layer (FAL)
and waits to receive control packets. As soon as a packet is received, the ethertype
field is validated and the data required to create the forwarding rule is extracted
from the control packet. The retrieved information is converted into a P4Runtime [6]
command and executed. After the command execution, the application uses Scapy
to create a response control packet containing the result of the operation and sends
it to the controller.
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The FAL is composed by two applications: FSPH and FCPH, both implemented
in Python using Scapy library. The FSPH uses Scapy library to listen the network in-
terface port connected to the switch. When a packet arrives coming from the switch,
the ethertype field is verified to identify the network architecture and the packet is
redirected to the correct controller through the interface port. The FCPH uses Scapy
library to listen all network interface ports connected to the controllers. When a
packet is received from the controllers, the ethertype field is validated and the packet
is redirected to the network interface port connected to the switch.

In the current implementation, there are two controllers implemented, both in
Python: an ETArch controller and an IP controller. The IP Controller listen to the
network interface port connected to the FIXP Abstraction Layer. When a packet
comes to the controller, the ethertype field is used to identify the Internet architec-
ture. The controller assembles the packet and sends a control packet to the network
interface port connected to the FAL.

The ETArch controller implements the same features described for the IP con-
troller, as well as some of the architecture-specific features, such as registering and
unsubscribing hosts to a workspace.

The proof of concept evaluation was conducted in a virtualized scenario where
each host, controller, the abstraction layer and the FIXP switch1 ran on a virtual
machine. The benefit of running the FIXP switch over a virtualized environment is
the possibility of using the BMv2 to execute the switch.

Fig. 3: Topology used on the FIXP evaluation.

1 In this initial evaluation, we have only one P4 switch. However, the architecture is generic and
can support any number of switches.
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In this environment, five hosts have been configured as presented in Fig.3: three
of these hosts for ETArch architecture and two hosts for IPv4. One FIXP switch was
used, initially with no previous forwarding rules.

Preliminary integration and evaluation tests to verify the behavior of IP and
ETarch packets through the FIXP environment were performed. Next, we show the
results obtained in the tests. To collect the numbers of Fig. 4, we repeated the test
30 times and 100 packets were sent, varying the size of the packets from 500 bytes
up to 1000 and 1500 bytes.

(a) packet forwarding processing time.

(b) forwarding rule insertion processing time.

Fig. 4: Average time to forward data packets and average time to process a forward-
ing insertion rule.

Fig.4(a) shows the average time to process data packets forwarded by the FIXP
switch. Observing the results, we can see that ETArch performed better than the
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traditional IP2. Moreover, it can be concluded that the packet size does not influence
the data packet processing time.

Fig.4(b) presents the average time for adding forwarding rules in the FIXP
switch. This time considers the whole processing from the moment that a packet
is received in the switch (and there is no match-action) until the rule is installed in
the switch. This time considers the full path from the FIXP switch through the FAL
and then back to the switch. Note that the time taken by the controllers to decide
what to do with the packet is not considered in this whole processing time. Such
time is controller-dependent and is not part of the FIXP control plane. In Fig.4b,
it can be seen that ETArch has only one measurement for the control plane, which
means that the evaluation did not vary with the size of the packets. This was done
because the architecture has a standard control packet and the size of the payload
does not affect the processing time.

It can also be observed that the average time of control packets processed by
ETarch is greater than the time of packets processed by IP. This is due to the fact
that ETArch architecture sends three control packets to perform the registration of
the entity to a workspace and then send the control packet to the FIXP switch to
insert a new forwarding rule.

The last test performed was the flow completion time (FCT). For this evaluation,
2000 packets of 1500 bytes were sent for each architecture. The mean time values
obtained in this test are similar to the values presented in Fig.4 for each architecture.
For IP, an average of 1.23 ms with a margin of error of 0.16; and for ETArch, we
obtained an average of 0.75 ms with a margin of error of 0.81. The value of the
margin of error obtained by ETArch results from the large execution time of the
control packets of this architecture.

5 Conclusion

In this work, we present the Future Internet Exchange Point (FIXP), its architecture,
implementation, and a proof of concept. FIXP aims at interconnecting distinct do-
mains of different Future Internet Architecture (FIA) so that they can co-exist. FIXP
is composed of a physical switching infrastructure and a set of virtualized network
functions. The physical switching needs to identify PDUs coming from different
FIA domains, process them, and forward to the appropriate output port. At the same
time, the virtualized functions deal with the control and management of software-
defined flows. FIXP allows the development of per architecture software-controllers,
decoupling data and control planes for several Internet architectures.

This first proof-of-concept implementation adopted TCP/IP and Etarch as the
Internet Architectures showing the capability of FIXP to deal with two different
headers. We believe that the TCP/IP architecture will co-exist for a long time, but

2 Important to highlight that it is not our intention to make comparisons between the Internet
architectures. Our goal is to verify the FIXP switch performance for different types of headers and
packet size.
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yet novel FIAs will appear. Using a virtual P4 switch (BMv2) to interconnect hosts
running the TCP/IP stack and ETArch FIA, we evaluated the FIXP. Obtained results
are promising for incoming data packets processing times, rule adding on BMv2
switch, and flow completion times. Future work includes an extension for NovaGen-
esis [7] and NDN FIAs [13], evaluation on hardware P4-based switches, larger-scale
experiments, and evaluation for multiple architecture applications.
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