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Abstract. Using virtualization, cloud environments satisfy dynamically
the computational resource necessities of the user. The dynamic use of
the resources determines the demand for working hosts. Through vir-
tual machine (VM) migrations, datacenters perform load balancing to
optimize the resource usage and solve saturation. In this work, a pol-
icy, named WPSP (Weighted Pearson Selection Policy), is implemented
to choose which virtual machines are more suitable to be migrated. For
each VM, the policy evaluates both the CPU load and the Network traf-
fic influence on the assigned host. The corresponding Pearson correlation
coefficients are calculated for each of the VMs and then weighted in order
to provide a relationship between the values and the host behavior. The
main goal is to clearly identify and then migrate the VMs that are respon-
sible of the Host saturation but also considering their communications.
Using the CloudSim simulator, the policy is compared with the rest of
heuristic techniques in the literature, resulting in a reduction of 89% in
the number of migrations, and thus reducing the use of bandwidth (5%),
network saturation (20%) and over-saturated hosts (51%). Additionally,
an improved VM allocation technique to reduce the distance the VMs
must travel in order to be migrated is presented, obtaining an average
reduction of 87% in the quantity of migrated data.

Keywords: Cloud computing · planning · virtual machines · migrations
· Pearson correlation coefficient · load balancing · CloudSim.

1 Introduction

Cloud Computing has become an effective alternative to local servers for many
users, whether to allocate the resources of companies or to compute scientific
programs in research centers. It provides dynamic and scalable virtualization
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resources through a network service and forms a virtual computing resource
pool allocated to a classic data center. Thus, it is possible to combine the hosts’
capacity on an on-demand pay-per-cycle basis, guaranteeing the defined Service
Level Agreement (SLA) to the users.

However, variability in the request-rate from the cloud service consumers at
any given time can seriously affect not only the Quality of Service (QoS) but also
the SLA. The applications, and particularly the network-intensive ones, often
need to communicate frequently, and the network I/O performance would affect
the overall VM performance notably. In this situation, hosts become overloaded
and unable to resolve all the requests, negatively impacting the SLA.

In the literature, there are many methods to avoid overloading hosts in data
centers. Some of these are based on load balancing strategies that facilitate
the distribution of the workload equally over the available resources [8]. Other
proposals apply VM migration to provide the required resources to the VMs
responsible for the host overload. However, the migration process can produce
unexpected network latency or congestion that becomes critical for achieving and
maintaining the performance of the application. That is why the migration pro-
cess requires correctly identifying a candidate migratable VM that ensures not
only the host load reduction but also keeps use of the inter-VMs communication
links contained, thus avoiding an SLA violation.

In the present paper, we propose the use of the Pearson correlation factor
to correctly identify those VMs that are seriously affecting the host overload,
taking into account both the computational and communication resource usage.
The proposed method not only tackles the current host state, but also evalu-
ates the previous states captured during the host execution timeline. When the
VM is identified, the migration process moves it to another host, releasing the
corresponding resources and effectively reducing the host overload. Moreover,
our proposal incorporates a weighting factor that provides a much closer rela-
tionship between VM correlation and Host behaviour. To avoid unnecessary VM
migrations, our proposal attempts to find the balance between the quantity of
CPU released by a VM and the communication affinity with the rest of the VMs
within the host.

The experimental results have been compared with the most well-known
heuristic methods from the literature, and demonstrate that our proposal im-
proves the host usage avoiding the overload and also reducing the global number
of VM migrations.

The rest of the work is organized as follows: in Section 2, the state of the
art used for the present work is described. Section 3 presents the VM selection
policy. Section 4 contains the experimental study, and finally, the conclusions
and future work are discussed in Section 5.

2 State of the art

In the literature, there are many works related to the virtual machine migration
process. Raja et al. in [2] present a survey of VM migration and server consoli-
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dation. They evaluated multiple migration schemes and they took into account
different parameters to compare them. Their conclusions pointed to the fact that
unnecessary and uncontrolled migrations are the main reason for SLA violation.
Most of the proposed solutions to initiate the migration process were based on
processing discrete data-captures to evaluate the QoS while others were based on
applying machine learning-based adaptive thresholds. In the present paper, we
propose an effective correlation-based method with data obtained from tracking
the host execution time-line taking snapshots periodically.

The correlation between two sets of data is a statistical measure that calcu-
lates the strength of the relationship between the relative values of two variables.
There are many studies in the literature applied to different fields of knowledge
that demonstrate the importance of correlation between multiple parameters for
taking correct decisions. Douglas et al. in [4] and Winter et al. in [15] compared
some correlation factors and their quality. In the current paper, given the contin-
uous nature of the variables (CPU and network load values) and the sensitivity
to variations in the differences between the sample values, we decided to focus
on the well-known Pearson correlation coefficient.

There are different works using correlation coefficients applied to Cloud Com-
puting. Choudhary et al. in [6] was based on Spearman’s Rank Correlation Coeffi-
cient to select the optimal VM according to the present workload and datacenter
resources availability to reduce the energy consumption. The results obtained,
compared with the VM Random Selection, demonstrated lower energy consump-
tion while maintained the required SLA. Moghaddam et al. in [9] proposed a VM
selection algorithm focused on energy reduction and also considering the SLA
parameter. The algorithm was based on the Pearson correlation coefficient and
was used to determine both VMs’ CPU utilization and the correlation with
their co-hosted VM. Their proposal was evaluated through simulation in the
CloudSim environment, using two different real Cloud data sets by the CoMon
project (PlanetLab) and Google. The results show that the correlation improves
the VM identification as migratable and reduces the energy consumption. Sun et
al. in [13] addressed the problem of online migration of multiple correlated VMs
among multiple datacenters. This work was focused on the optimization of mi-
gration performance. The authors treated both bandwidth and routing required
for the VM migration process and use the correlation to determine those VMs
that must be migrated all together. The results reduced the remapping cost and
the average migration time and downtime of the VMs.

Our proposal differs mainly from previous works in the fact that we use the
correlation coefficients to determine the influence of the VM on the resource
usage of the allocated host. We evaluate periodically both computing and com-
munication load for each allocated VM. When an overloaded host has been
identified, our method determines the VM candidate to be migrated. Applying
our proposal, the overall migrations were reduced, thus reducing the network
saturation, increasing the host utilization and without compromising the SLA.

In [1], Abdelsamea et al. presented a host saturation algorithm based on
multiple regressions (CPU, RAM and Bandwidth), decreasing the energy con-
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sumption and SLA. Additionally, they combined Local Regression (LR) with
Loess’ method to develop a hybrid version of their algorithm. The results show
that the implemented algorithms have better results for energy but obtains worse
SLA violation results due to being inversely correlated to energy. Ali [7] et al.
presented a Weighted Linear Regression algorithm for resource prediction, CPU,
RAM and network bandwidth. The algorithm was compared with other detec-
tion techniques in the literature shows reductions in the energy consumption
while providing a high level of commitment to the SLA, maintaining a similar
level of migrations.

In the present paper, we evaluated not only the similarity in behavior between
VMs and Hosts, represented by the correlation factor, but also the influence
that these VMs had on generating this behavior. Thus, we propose the use of
a weighting factor applied to the correlation factors that allows to identify the
most suitable VM to be migrated. Our proposal is also combined with a new
assignment method with the main aim of decreasing the distance to be crossed
in the migration process and then reducing the network utilization.

3 Problem Statement

The policy presented in this paper, hereinafter referred to as Weighted Pearson
Selection Policy (WPSP), is based on three main ideas: (1) evaluating the host
execution in the time-line to determine the resource usage behavior of each one
and detect the overload situations, (2) evaluating the use of both computing
(in terms of CPU usage) and communication (in terms of data transfer volume
within the host) VM resource usage to correctly identify the VMs closely related
to the host overload, and (3), applying a weighting process to the volume of CPU
and network used by the VMs in relation of their host to adjust the obtained
correlations, finally defining which VMs are provoking host saturations. Our
first goal is to obtain knowledge of the host load during their execution. This
information is acquired from snapshots taken of the system periodically. These
snapshots contain information about the resources required by VMs and the
resources really assigned by the hosts.

The second core element of our proposal is to determine the VM that has the
greatest influence on the overloaded hosts’ resource usage. Each host allocates
multiple VMs and each with different resource requirements. It must be taken
into account that some of these VMs can be related to the same service so that
migrating any VM does not ensure the reduction of overload as the external host
communication can increase due to the new VM allocation. For this, we propose
to consider both computation and communication resource usage to identify
their influence on the host overload and determine the relationship between the
VMs inside the host.

The idea behind the use of the Pearson correlation is to determine the simi-
larities between the CPU and network resources usage between the host and each
VM, with the aim of identifying the VMs with a wider impact on the host re-
source usage. Knowing which VMs are the most influential, we can migrate those
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causing the biggest impact on the release of resources but triggering a smaller
number of migration. The correlation coefficients assume n samples of two vari-
ables, x (host) and y (VM). The Pearson correlation coefficient is calculated by
Eq. 1, where x̄ and ȳ represent the arithmetic mean of x and y, respectively. In
addition, each pair of values corresponding to the same point in time cannot be
altered so as to maintain the consistency of the coefficient obtained.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(1)

The correlation coefficient between two ordered sets of values measures the
strength of the relationship between the relative movements of the two variables.
The values range is [-1, 1]. A positive correlation means that if one variable
increases, the other variable also tends to increase. A negative correlation means
that if one variable increases, the other variable tends to diminish. The weakest
linear relationship is indicated by a correlation coefficient equal to 0.

In this paper, rcpu measures the relationship between the Host CPU usage
(x) and a VM’s CPU usage (y), in the same way rnet measures the relationship
between the Host internal communications (x) and a VM’s data transfers to
other VMs inside the same Host (y), both calculated by Eq. 1. The main aim of
the WPSP Policy is to identify the candidate VMs to be migrated to eliminate
the host saturation with the minimum VM migrations. In order to meet these
objectives, we consider that the VM with the highest positive rcpu is the best
candidate to be migrated with the aim of reducing host saturation. However, in
the case that this VM also has a high positive rnet, the migration of the VM
will produce an increase in data transfers through the external communication
channels, thus fostering the saturation of these channels and producing a negative
impact on global performance. To prevent this occurring, we should consider the
migration of VMs with a high positive CPU correlation rcpu ' 1, but with a
weak network correlation rnet. While there is the possibility of migrating a group
of VMs highly correlated with internal communications, this option substantially
increases the number of migrations and their cost.

Normalization is the process through which a set of values V , ranging from
[min(V ), max(V )] are scaled to [0, 1]. In our policy, the CPU and BW usage of
each VM is normalized in this sense. These are essential values (ncpu and nnet)
for evaluating the role of each VM inside the host, and in collaboration with the
correlation value, we can figure which VMs are the most influential in terms of
volume and oscillations over time. Eq. 2 shows how the ncpu and nnet values are
calculated, where x is the value (CPU or network) of the VM, xmax the highest
value among the VMs of the same host and xmin, the minimum.

n =
x− xmin

xmax − xmin
(2)

With the aim of considering the VMs’ consumption of both CPU and com-
munication resources , we propose a heuristic function computed by Eq. 3. This
provides each VM with a value based on the magnitude of both the rcpu and
rnet correlation coefficients and the ncpu and nnet ponderation values.



6 S. Vila et al.

hval =
1− (w ∗ rcpu ∗ ncpu)

(1 + (w ∗ rcpu ∗ ncpu)− (w ∗ rnet ∗ nnet)) (3)

The heuristic function allows the relationship between both correlation coef-
ficients and weighted values to be modelled providing a mechanism to compare
the VMs within a Host. The resulting value hval defines the migration prior-
ity for each VM, the lowest value being the best option. Additionally, after a
specific threshold, hval th, the VMs are not allowed to be migrated, as can be
seen in Figure 1. The w variable defines the slope of the hval function, and thus
controls the hval value scale. With a value of w = 1, the hval function tends
to 0 irrespective of the values used. On the contrary, with w = 0 the resulting
values tend to 1. The tuning of the w variable can be useful in exceptional cases
with the values located in a bunch. However, with w = 0.5, the resulting values
are bounded in a smooth curve that allows diversity.

By way of example, Table 1 shows the corresponding hval value for a set of
VMs with different combinations of rcpu, rnet, ncpu and nnet values. Figure
1 shows the hval value for each VM and their location on the plane. It shows
the contour lines projected by the hval function on the plane formed by rcpu,
rnet, ncpu and nnet values. We established the premise that the VMs directly
related to the CPU usage and have a high weight are good candidates to be
migrated, provided that they are also weakly correlated to the internal network
communication.

We can observe this is the case for VM4, obtaining the minimum hval value.
It has notable CPU values, having a correlation of 0.7 and a big usage of CPU
with a weight of 1, on the contrary, the network usage is small. VM0 is in the
same case than VM4 but, even has more CPU impact and network load, so it
obtains a bigger hval value. By counterpart, VMs 1, 2 and 3 have no chances to
be migrated. VM1 due to it shows low weights, VM2 due to its network usage
is too much valuable than the CPU load, that is too low, and VM3 is near the
threshold, however CPU usage should be higher. These results show that the
hval function can be used to prioritise the candidate VMs to be migrated.

3.1 Weighted Pearson Selection Policy

The WPSP policy proposed in this paper is represented by Algorithm 1. The
WPSP policy is executed when the saturation of one of the hosts is detected.
The algorithm is executed until the saturation is solved or until no more VMs
are selected for migration. First, the VMs able to be migrated are obtained
(line 2). Then, the Pearson correlation coefficients are obtained for each VM,
in relation to the CPU (rcpu) and network (rnet) usage in the host H (lines 4-
5). In the case of the rnet correlation coefficient, only communications between
virtual machines within the same host are taken into account. In lines 6-7, the
weighting values ncpu and nnet are obtained. Next, we obtain the heuristic value
hval for each VM (line 8). Finally, the VMs with the minimum hval are selected
for migration until the saturation problem is solved or no more VMs are eligible
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Table 1. Example. hval results for
rcpu and rnet correlation classes

Label rcpu rnet ncpu nnet hval

VM0 d (+0.9) d (+0.9) s (0.9) s (0.8) 0.57
VM1 i (−0.9) i (−0.6) w (0.2) w (0.3) 1.09
VM2 w (−0.3) d (+0.9) w (0.0) s (1.0) 1.82
VM3 w (+0.5) w (+0.5) s (0.8) w (0.5) 0.74
VM4 d (+0.7) w (+0.2) s (1.0) w (0.0) 0.48

s=strong, w=weak, d=direct, i=indirect

Fig. 1 hval function representation and
example results

(hval values exceed the WPSP decision threshold hval th). When no VMs meet
this criterion, a null value is returned.

3.2 Minimum Distance Group VM Allocation policy

To complement our selection policy, WPSP, being focused on the reduction of
migrations, we are interested in an allocation policy that helps it to succeed on
this task. We propose an improvement based on the distance the VMs must travel
across the network. The ”CloudSim most efficient host” allocation technique is
improved by applying the Minimum Distance Group, MDG, that is, instead of
selecting the most efficient suitable host from the whole datacenter, the hosts are
grouped and ordered by number of jumps inside the network, trying to migrate
the VM to the nearest group. If this is not possible, the next nearest group is
tested each time until it can be allocated, as can be observed in Algorithm 2. If
the VM does not fit any host, that is, trying to allocate it at full CPU usage,
the migration is not performed. In general, any criteria for the selection function
can be implemented. For this experimentation, the getPowerAfterAllocation
function provided by CloudSim was selected. This returns the host with the
lowest increment in its energy consumption after the VM is located.

4 Experimentation and results

This section describes the configuration of the experimental environment, mainly
based on the CloudSim simulator [5] and the results obtained.

4.1 Experimental setup

The CPU load traces used are part of the PlanetLab environment. They are
obtained with the CoMon monitoring system [11]. There is a set of traces corre-
sponding to 10 days of execution with around 1000 virtual machines. The first
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Algorithm 1 Weighted Pearson Selection Policy - VM selection algorithm

Require: H: Overloaded host, VMH: set of VMs ∈ H
Ensure: SVM: Selected migratable VMs
1: declare MVM: migratable VMs area, rcpu: current cpu correlation values, rnet:

current network correlation values, ncpu: current cpu weighted value, nnet: current
network weighted value, Hval: heuristic values for each vm ∈ MVM, hval th:
WPSP decision threshold

2: MVM← getMigratableVMs(VMH)
3: for each vm ∈MVM calculate
4: rcpu← calculate cpu correlation(H, vm)
5: rnet← calculate net correlation(H, vm)
6: ncpu← calculate cpu weight(MVM, vm)
7: nnet← calculate net weight(MVM, vm)
8: Hvalvm ← calculate hval(rcpu, rnet, ncpu, nnet)
9: end for

10: while isSaturated(H) do
11: vm ← Select vm ∈MVM with min(Hval) | Hval ≤ hval th
12: if vm is NULL then
13: break
14: end if
15: MVM←MVM− vm
16: SVM← SVM ∪ vm
17: end while
18: return SVM

Algorithm 2 MDG - VM allocation algorithm

Require: H: Overloaded host, VM: VM to be migrated, SH: Set of Hosts - {H}
1: bestHost = hi ∈ SH min(distance(H, hi)) ∩ min(getPowerAfterAlloc(VM, hi))
2: return bestHost

150 files of the trace 20110303 are the ones used for the experimental study. Each
contains 288 values corresponding to a day of performing. The PlanetLab traces
are updated every 5 minutes. This determines the snapshots ratio in which VMs
and Hosts data is obtained in order to evaluate the correlation coefficients.

Table 2 shows the virtual machine configuration. Each VM contains one
cloudlet acting as endless tasks, whose percentage of CPU load being defined by
the PlanetLab traces. Table 3 shows the main characteristics of the hosts used
based on those present by default in CloudSim.

An interaction is defined as the communication between two VMs through-
out the simulation. The network traces, which represent the VM interactions,
were generated using the FNSS tool [12], obtaining sin cyclo-stationary traffic
(σ = 0.8, logψ = −0.33) according to [10]. This traffic has an equivalent be-
haviour to the Sprint Europe network [14]. We assume a limit of 3 Mbps for
the bandwidth use for each one. Throughout the simulation, the values of the
interactions are updated using the network traces. We defined three different
types of interaction: low, with an occurrence of 50% and ranged between 0 and
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Table 2. Virtual machine characteristics

Type # CPUs MIPS BW (Mbps) RAM (MB) Quantity

Tiny 1 750 100 870 100
Small 1 1500 100 1740 100
Medium 1 3000 100 1740 100
Large 1 3750 100 613 100

Table 3. Host characteristics

Type Model # CPUs MIPS BW (Mbps) Quantity

Small HP ML110 G4 2 1860 1000 21
Large HP ML110 G5 2 2660 1000 15

0.6 Mbps; medium, 30% of occurrences, ranged between 0.6 and 1.8 Mbps; and
high, with an occurrence of 20%, ranged between 1.8 and 2.85 Mbps.

It was also established that 15% of interactions occur within the same host,
while only 0.05% occur outside the host. In order to test the VM preservation
capabilities of our policy, and after balancing CPU and network resources, we
determined that an initial 15% of internal communications offers enough traffic
to maintain the VMs in the same hosts but with opportunities to leave them
depending on the CPU load. During the simulation, and due to migrations,
these percentages varied, increasing the number of external communications and
reducing the internal ones.

The interconnection topology, where central nodes are switches, the leaf
nodes being hosts, is shown in Figure 2.

Fig. 2. Topology

Table 4 shows a summary of the most important CloudSim configuration pa-
rameters used during the experimentation. For each technique, 30 experiments
were carried out varying the initial placement of VMs in the hosts, which affected
the number and typology of the interactions among the VMs. The metrics anal-
ysed in the present work are presented in Table 5.
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The WPSP threshold, hval th, was set at 0.65 after analysing which value
obtains the lowest ratio of unsatisfied/satisfied MIPS. Due to space reasons, this
analysis is not presented.

Table 4. Configuration parameters of CloudSim

Parameter Value Parameter Value

CPU trace PL 20110303 BW between Host-VM 100 Mbps
% Internal interactions 15% BW between Host-Switch 1000 Mbps
% External interactions 0.05% CPU Saturation limit 70%
# of switches 16 Simulation time 86400 s
# of hosts 36 # of experiments per technique 30
# of virtual machines 400 Host saturation detection technique CloudSim IQR
Window size 6 VM allocation technique MDG
Max. BW of the interactions 3 Mbps Underutilised host shutdowns Disabled

4.2 Virtual Machine Selection Policies

The selection policy selects the VM candidate to be migrated. CloudSim’s default
techniques were used with the aim of compare them with the policy proposed in
the present work. The techniques [3] used in the comparison are the following:

– Random Search (RS): Among the candidate VMs to be migrated, one is
chosen randomly.

– Minimum Migration Time (MMT): Chooses the VM that requires the least
RAM memory.

– Minimum Utilisation (MU): Chooses the VM which requested fewest MIPS
during the simulation.

– Maximum Correlation (MC): A linear regression is generated transposing
a matrix with the percentage of use of the last 12 instants for each VM,
choosing the VM with the highest CPU usage correlation in relation to the
rest of the VMs.

4.3 Default allocation vs. MDG

In order to investigate the effects of applying the improved version of the Default
VM Allocation Algorithm implemented by CloudSim, a comparison with the
different tested VM selection policies is presented, all of them using the VM
allocation policy IQR. The metrics analyzed in the present work are shown
in Table 5. The median for all of these metrics are shown in Table 6, which
summarizes the complete experimentation. Bold values show the best values in
DA vs. MDG comparison.

The main objective of the policy is to improve the BW used and the distance
the migrated VMs must travel across the network, reducing the distance between
the origin and destination hosts. Observing RAM in BW values (Table 6-10) is
it clear the objective is achieved, reducing the quantity of MB moved across the
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Table 5. Metrics for experimentation

Metric Description

Traffic Sum of the topology links traffic
Unsatisfied Traffic Traffic that surpassed the available BW
Migration distances Average number of jumps that a VM must do to be migrated
Number Migrations Sum of all the migrations done at each snapshot
Unsatisfied VMs VMs not providing the required MIPS due host over-saturation
Saturated hosts Hosts that exceed 70% of CPU but can meet the CPU demand
Unsatisfied hosts Hosts exceeding 100% of CPU, unsatisfying the CPU demand
% Unsatisfied MIPS Percentage of MIPS not executed due to host over-saturation
Migrated RAM Sum of all the sizes of the migrated VMs
RAM in BW RAM moved across the network
Time Migrating Sum of the time the migrated VMs spent moving

network by an average of 40% . In a similar way, the number of jumps (Table 6-3)
done by migrated VMs is reduced by 25% for WPSP and an average of 45.24%
for the rest of the techniques. Moreover, the fact the VMs are migrated to nearby
hosts does not affect the rest of the metrics negatively. On the contrary, except
for the average ratio of unsatisfied MIPS (Table 6-4), which shows dispersed
values from -7% (WPSP) to 3.3% (MC), the rest of the metrics are improved.
There is a reason for the improvement in migration jumps being higher in the
other metrics. WPSP starts migrating influential VMs, and, hence, VMs with
higher CPU demand, which means that not all the VMs fit other hosts, thus
limiting the migrations to a few hosts that could be distant. On the contrary, the
other techniques migrate all kinds of VM, facilitating nearby hosts for VMs with
low CPU demands. The number of Unsatisfied Hosts (Table 6-8) is especially
reduced, with an average improvement of 12.76% being obtained. Other metrics
like Number of Migrations (Table 6-5) or Unsatisfied Traffic (Table 6-2)
obtain little upturns, around 5% on average, but the policy is almost guaranteed
not to harm these.

Table 6. DA-MDG VM allocation policies comparison

WPSP MC MMT MU RS
Index Metric DA MDG DA MDG DA MDG DA MDG DA MDG

1 Traffic 1560913 1561781 1646162 1610919 1637468 1602595 1646674 1616205 1652648 1611330
2 Unsat. Traffic 229150 228607 277088 263239 273139 261452 317057 300819 281150 264989
3 Migration Distances 5.18 4.10 5.17 2.90 5.17 2.76 5.18 2.77 5.18 2.90
4 % Unsat. MIPS 2.41 2.24 2.48 2.57 2.12 2.15 3.29 3.14 2.49 2.51
5 # of Migrations 200 188.5 1373 1300.5 1637.5 1571 4455 4144.5 1407 1409
6 Unsat. VMs 7444.5 7039.5 8281.5 7933 7624.5 7202 15712.5 14022 8525.5 8183.5
7 Overloaded Hosts 3739 3618.5 3979 3882 4001 3872.5 4105.5 3992 3979.5 3819.5
8 Unsat. Hosts 1441 1382 2799 2382.5 2293 1956 3565 3014 2904.5 2478.5
9 Migrated RAM 254040 241346 1679898 1630029 1163570 1129352 5547126 5185030 1763130 1757446
10 RAM in BW 1304229 987856 8735037 4705944 6027358 3210863 28758469 14255744 9133906 5092168
11 Time migrating 4065 3862 26878 26080 18617 18070 88754 82960 28210 28119
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4.4 VM selection policies comparison

The next experiment was conducted to know the degree of improvement in both
WPSP and MDG policies against the VM selection policies and the default VM
allocation policy provided by CloudSim. Table 6 shows the obtained results.
Underline values reveal which is the best value in the entire comparison for each
metric.

A high number of saturated hosts produces a huge number of migrations.
Nevertheless, the effects of some of those migrations can be negligible on the
Unsatisfied Hosts metric. Thus, the correct migratable VM selection is crucial
for reducing all these metrics and obtaining better performance. To this end, it
is vitally important to identify those VMs which are really responsible for the
saturation.

The results for both the Saturated and Unsatisfied Hosts metrics show
great differences with regard to the policies tested in the literature. Observing
host saturation, there is an average improvement of 10%, with a 9.56% im-
provement compared to the second best policy, MMT. Regarding Figure 5, the
Unsatisfied Hosts, there is a big average improvement of 51% on average, with
a 52% improvement over the next technique, RS. Not only is it important to
observe how many times the hosts were working over their capacities, but all
the MIPS that did not perform during these periods. It can be perceived in Ta-
ble 6-4, % of UnsatisfiedMIPS, that WPSP achieves an improvement of 10%
for RS and MC, and a big upturn of 32% for MU. These results are even more
impressive considering that our proposal achieves them while performing consid-
erably fewer migrations than the other policies, 86.3% reduction in migrations
compared with the policy with fewer migrations (MC) (188.5 vs 1300.5).

Observing the Number of Migrations, in Figure 3, all other methods show
a huge number of VM migrations. Our proposal is able to reduce the overall
number of migrations by an average of up to 89%. The lower number of migra-
tions provides greater availability of the communication links and this is obtained
without any prejudice on the host loads.

Furthermore, analyzing the interconnection links, from the point of view of
the used Traffic, Table 6-1, and the Unsatisfied Traffic, Figure 4, shows
values of up to −5% and −20% respectively. The VMs that were migrated were
those that do not interfere in the network links, thus maintaining locally the VMs
with inner communications. During the migration process, the VMs must cross
the network to reach their host destination. The traffic generated by these VMs
could significantly exceed the data interchanged by default. Even if a method
(MDG) is implemented to reduce this issue, the Number of Migrations is a de-
termining factor. In Figure 6, RAM in BW , and Table 6-11, Time Migrating,
our technique has an average improvement of 89.5% and 86.7% over the other
techniques. The results are consistent with the average improvement in the
Number of Migrations (89%).
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Fig. 3. Number of migrations Fig. 4. Unsatisfied Traffic

Fig. 5. Over-saturated hosts Fig. 6. RAM across network

5 Conclusions

In this paper, the authors defined a VM selection policy that applies the Pearson
correlation coefficient with weighting values to evaluate the influence of the VM
CPU and Network utilization on the Host. This allows the correct migratable
VMs to be determined that are able to reduce the Hosts overload by up to 10%
compared with other methods from the literature, with an improvement of 51%
in the number of unsatisfied hosts. The use of our proposal also results in a
reduction of up to 5% in the bandwidth used and reduced the data traffic by up
to 20% .

Additionally, an improvement, MDG, in the default VM allocation policy
provided by CloudSim is implemented. This reduces the distance the migrated
VMs must travel across the network. The technique is able to reduce the quantity
of data moved by the migrated VMs by 89.5%.

Furthermore, the number of migrations was reduced by up to 89%, which
provides better resource usage and load balance. The results show the importance
of taking network traffic into consideration in the migration decision process.

In the future, the authors are interested in taking into account the way
in which migratable VMs can affect the possible assigned Hosts prior to the
migration process. Thus, the assignment process would be much more consistent
in the future Host behavior, reducing the final number of migrations and the
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network utilization. Finally, it could be interesting to discover the limits of WPSP
policy in terms of the CPU and network VM stability and ranges.
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