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Abstract—Video services account for the largest share of all
Internet traffic, demanding a network capable of supporting the
requirements of delay-sensitive traffic. Fluctuations in network
load can cause high delays in the queues of network routers,
which tend to degrade the Quality of Service (QoS) for adaptive
video streaming, such as Dynamic Adaptive Streaming over
HTTP (DASH). This work is positioned in the scope of active
management queues (AQM) to improve the QoS of a DASH
service by means of dropping packets. One traditional AQM
that adopts a packet drop policy is Random Early Detection
(RED), developed to drain the flow in times of congestion and
thus reduce queueing delay. We revisited and implemented a P4-
based implementation of RED, named iRED (ingress RED), an
algorithm capable of dropping packets at the ingress pipeline, an
innovation compared to other AQM strategies based on dropping
at the egress. iRED was evaluated in two scenarios. First, we
compare iRED against state-of-art AQM algorithms employing
egress packet dropping in terms of Round-Trip Time (RTT),
throughput and their impact on resources usage. Our findings
indicate that iRED outperforms existing P4-based approaches by
approximately up to 2.5x in RTT and 0.75x in throughput for
the given buffer sizes. Next, we compare iRED versus Tail Drop
(TD) approach in an emulated programmable Content Delivery
Network (CDN) employing DASH. Experiments indicate that the
iRED improve the QoS by approximately 0.85x in terms of cached
video available in the client’s buffer and 0.9x in Frames Per Second
(FPS) played.

Index Terms—Quality of Service, Dynamic Adaptive Streaming
over HTTP, Active Queue Management, Random Early Detection,
Data plane programmability, P4.

I. INTRODUCTION

Currently, the video service is dominating Internet traffic,
reaching more than 80% in 2021 [1]. Within merely three
months during the COVID-19 pandemic, video conferencing
services increased by about 30x [2]. To support the required
QoS, cloud and network service providers have had to scale
their infrastructure to accommodate this massive demand.

Conceptually, the Internet was designed as a end-to-end
network offering best-effort packet switching services, a non
ideal scenario for streaming services which present stringent
requirements in terms of delay and bandwidth assurance [3],
usually defined as QoS and, more recently, also linked with the
concept of Quality of Experience (QoE). The Internet evolved
in several directions over time, to cope with ever increasing

demands and new challenging applications, and it was not
different for video streaming services. The killing technology
nowadays offers adaptive bitrate schemes over HTTP and places
video content closer to customers, seeking to mitigate the in-
trinsic properties of best-effort packet switching environments.

In this scenario, MPEG-DASH or simply DASH [4], oc-
cupies a prominent position, being the adopted solution by
important players on this market, including Netflix® and
Google® [5]. In essence, DASH supports video encoding at
various mixtures of resolution, bitrate, frames per second, and
other parameters, offering an adaptive self-service menu to
customers, which are now able to pick the best combination
according to their conditions [6]. Such combination is defined
based on the resources available on the devices consuming such
content and also based on the infrastructure status. A video is
divided into chunks of the same time duration, allowing the
video player to switch between the multiple video quality levels
[7]. Although DASH is considered a “smart” mechanism due to
its capability to adapt to fluctuations caused by network load,
unfortunately such solution by itself is not enough to keep the
pace required by certain Service Level Agreements (SLA) and
other auxiliary mechanisms should be designed to jointly work
with DASH.

Given this context, we revisited the RED algorithm [8],
a well-known AQM mechanism used for randomly dropping
packets, as a candidate solution to improve the DASH QoS.
Thanks to recent advances in programmable hardware, we
implement a RED-like algorithm using the P4 language [9],
named iRED (ingress RED). iRED going beyond other AQM
solutions in the data plane, such as CoDEL [10] and PI2
[11], that are based on dropping at the egress pipeline, where
queuing information is accessible as part of the standard
packet metadata. Our iRED design overcomes this limitation
using advanced resources of mirroring and recirculation (with
minimal overhead), sharing the queue congestion status per port
from egress to ingress pipeline.

In our evaluations, we ran two types of experiments using the
BMv21 software switch. First, we assess the impact of dropping
packets at the ingress versus egress pipelines. We evaluate

1https://github.com/p4lang/behavioral-model/blob/main/docs/simple switch.md



whether dropping packets at the ingress with iRED would have
some advantage over other well-known AQM egress dropping
algorithms, like CoDEL [10] and PI2 [11]. We analyze these
algorithms in terms of RTT, throughput and utilization of
resources.

In the second experiment, we evaluate the hypothesis that
dropping packets is not necessarily bad for a video service [12].
Over the years, there was a common sense that networks should
avoid dropping packets, since for each dropped TCP segment, a
retransmission would be necessary. However, some studies [12]
observed that for the specific case of video transmissions, drop-
ping packets reduces end-to-end latency. We evaluate if iRED
could improve the DASH QoS in an emulated programmable
CDN, delivering content to video clients. For this case, we
evaluated iRED and Tail Drop (TD) approaches.

In summary, the main contributions of this work are:
1) Implement an AQM algorithm, named iRED (ingress

RED), for programmable data planes;
2) Design the AQM employing successfully an ingress

packet drop policy with a minimal overhead and compare
against existing P4-based implementations;

3) Deploy and evaluate the impact of using iRED algorithm
in a DASH service.

This work is organized as follows; the fundamental con-
cepts regarding implementing AQMs using programmable data
planes and related works are briefly described in Section II.
The proposal is described in Section III. In Section IV, the
experiments and evaluation are detailed, including a brief view
about DASH video service and the workloads used. Finally, the
conclusions are depicted in Section V.

II. RELATED WORK

Queuing delay occurs when a packet waits in the queue
before being transmitted through an interface on a router. This
waiting time can vary according to traffic load in the network
that is crucial for sensitive-delay applications such as DASH.
If the packet spends more time in the queue than a threshold,
the DASH QoS tends to be degraded. This happens because
packets are held in router queues, and hence the video player
will not have frames to play, demanding video rebuffering [13].
We believe in the hypothesis that subtle packet drops can be
used to control the queue occupancy, thus latency [10], which
can be used for enhancing the quality of the video service in
terms of delay [12].

We have observed that decreasing queuing delay is a topic
that has been discussed with AQM proposals for the last
three decades, such as RED [8], BLUE [14], CoDEL [15],
CAKE [16] and PI2 [17]. Recently, CoDEL and PI2 were
rewritten to be supported in state-of-the-art network equipment
and available as open-source in P4 language with the aliases
P4-CoDEL [10] and PI2 for P4 [11].

The queue occupancy is key for AQM algorithms since such
metric is an input to calculate the probability of dropping a
packet. Some AQM algorithms such as CoDEL [10] and Pi2
[11] utilize the queue delay per packet to decide if the packet

should be dropped or not. However, in some programmable
devices2 such metric is available only at the egress pipeline
which suggests that the AQM algorithm needs to be run at the
egress, where the metric can be obtained.

A. The P4 programming language

P4 language [9] emerged in 2014 as an alternative and natural
evolution of the network programmability paradigm, bringing
new horizons to program the data plane of a network element.
P4 is a declarative programming language for expressing the
behavior of packet processors. It is a domain specific language
with constructs (e.g., headers, parsers, actions, tables, control
flows etc.) optimized for writing packet forwarding functions.
Using P4, developers can program data plane packet pipelines
based on a match/action architecture (see Fig. 1); they can
create custom parsers for new protocol headers, define custom
flow tables, the control flow between the tables, and custom
actions. P4 programs allow developers to uniformly specify
packet processing behavior for a variety of targets (ASICs,
CPUs, NPUs etc.).

The execution of a P4 program follows a simple abstract
forwarding model with distinct phases; when the packet arrives
at the switch, it will cross the programmable parser and then
the ingress block. In the programmable parser, the headers are
exposed to be analyzed by the following blocks. The match-
action logic determines the ingress and egress blocks. The
non-programmable traffic manager encompasses functions such
as packet scheduling, shaping, AQM etc., depending on the
target’s predefined and usually limited functionality. The packet
crosses the queue, match-action pipeline in the egress block,
and sent to the deparser, responsible for serialising the packet.

The current specification of the P4 language (P4 16), in-
troduced the concept of the P4 architecture that defines the
programmable blocks of a target and their interfaces. Along
with the corresponding P4 compiler, it enables programming the
P4 target. At the moment, the v1model architecture, depicted
in Fig. 1, is used by the reference BMv2 software switch.
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Fig. 1. Queues in V1model architecture.

2This is the case for BMv2 and tofino1. Tofino2 and Tofino3 allow to obtain
queue occupancy from the ingress pipeline.



B. CoDEL

CoDEL is an AQM algorithm specified by the IETF in RFC
8289, focused on addressing the Bufferbloat problem [18]. The
logic of the packet drop policy is applied in the egress pipeline,
as described in Fig. 2. Codel tries to keep the queueing delay
below a specified threshold (TARGET parameter) in a one-
time interval (INTERVAL parameter). Codel ensures that the
queueing delay will be periodically lower than the threshold,
following these steps for each packet: i) if the queueing delay
is below the threshold, a packet is never dropped; ii) if the
threshold is reached by more than interval time units, the first
packet will be dropped; iii) from then on, the interval between
dropping packets is getting smaller until the threshold delay is
reached.
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Fig. 2. P4-CoDEL integration in P4 reference pipeline. Adapted from [10].

C. PI2

PI2 is a linearized AQM for both classic and scalable TCP,
based on Proportional Integral algorithm [17]. The PI2 uses
queueing information (delay) per packet in conjunction with
PI gain factors (α and β) to trigger the packet drop policy.
The output probability of the basic PI controller is squared
when dropping classic TCP packets or doubled when marking
scalable TCP traffic. As with P4-CoDEL, PI2 logic is applied
in the egress pipeline, as can be show in the Fig. 3.

Parser

Ingress Pipeline

IPv4 Forwarding Deparser

Egress Pipeline

PI2 AQM

Fig. 3. PI2 for P4. Adapted from [11].

III. DESIGN OF IRED

Both studies presented above apply the packet dropping
policy in the egress pipeline due to the constraints imposed
by some programmable devices (e.g., tofino1). However, there
is a price to pay for this choice. In both cases, the packets
to be dropped have to go through the entire programmable
hardware pipeline, wasting switch resources. Our solution goes
beyond, using a mechanism based on cloning, recirculation, and
dropping to overcome this barrier. We split our algorithm into
two pieces, positioned at the ingress (action to drop) and egress
(decision to drop) programmable blocks, as is shown in Fig. 4.
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Fig. 4. iRED solution in V1model architecture.

For a better understanding, we start with the egress pipeline.
As can be seen in Fig. 4, the decision on dropping the packet or
not, employing when needed the dropping probability is done
in the egress pipeline. If iRED verifies that the average queue
size is between min-max thresholds, the current packet can be
cloned or not, and the original packet is sent out to the next
hop. The cloned packet is recirculated to the ingress pipeline,
indicating the queue congestion status. In the ingress pipeline,
the iRED algorithm (action to drop) turns on the drop flag by
output port. The next packet for the particular output port with
drop flag ON will be dropped, and the drop flag turns off.
In this case, we use the concept of dropping future packets,
already discussed in another work [19]. The future packets are
the next packets that arrive in the switch after the drop flag be
turned on. With iRED, the ingress pipeline may then prevent
this packet from exacerbating the imminent queue buildup.

Algorithm 1 shows the iRED part running at the egress, re-
sponsible for calculating the probability of dropping (similar to
the original RED algorithm), cloning and recirculating packets
when the threshold is reached.

Algorithm 1 DECISION TO DROP - EGRESS
Input: pkt, maxLenQueue, N, enq qdepth, registerProb, n

1: minThsld = maxLenQueue
2

−N
2: maxThsld = minThsld× 2
3: for each pkt do
4: if pkt == pktCloned then
5: recirculate(pkt)
6: end if
7: qAvg = oldQdepth ∗ (1− 2−n) + enq qdepth ∗ (2−n)
8: if (qAvg ≥ minThsld) and (qAvg ≤ maxThsld) then
9: dropProb = registerProb2

10: registerProb = dropProb
11: randomV al = random(0, N)
12: if dropProb ≥ randomV al then ▷ Flipping a coin
13: clone(pkt)
14: end if
15: end if
16: if qAvg > maxThsld then
17: clone(pkt)
18: end if
19: end for



In our design, the cloned packets (pktCloned) are used to
inform that future packets should be dropped in the ingress
pipeline. However, there is no way to clone packets from egress
directly to ingress in actual data plane architectures, including
PNA [20] and PSA [21]. To overcome this barrier, we use one
type of primitive clone (E2E, Egress-to-Egress) to make an
identical copy of the packet. In this way, the original packet
is sent to its destination without increasing delay, and the
cloned packet goes back to the egress pipeline. When the cloned
packets enter the egress pipeline, they are fast-forwarded to the
ingress pipeline thanks to the primitive recirculation (RECIRC).
The cloned packet carries the port number (additional 9 bits)
which means congestion is happening in that port. In the ingress
pipeline, we use a structure to map the congested output ports
that should indicate to drop future packets going to them, using
only 1 bit per port.

In this sense, Algorithm 1 should receive the following
parameters as input:

• pkt: the current packet;
• maxLenQueue: max queue size;
• N : it is used to calculate the minimum threshold and

random values for the dropping logic;
• enq qdepth: the queue depth when the packet was

queued3;
• registerProb: register that keeps the probability of drop-

ping;
• n: number used to calculate the average queue.
The minThsld will always be half the maximum queue size

minus N , and the maxThsld is twice the minThsld (lines
1-2), following the rule of thumb, setting maxThsld to at
least twice minThsld [8]. Algorithm 1 works as follows, if
the packet is a clone, it should be recirculated to the ingress
pipeline (lines 4-6), that is, it indicates that the future packets
should be dropped in the ingress for the specific output port,
using only 9 additional bits per packet. For regular packets,
the current queue depth is used to compute the queue average
(qAvg), according to the Equation 1 (line 7) that is based on the
Cisco RED average equation [23]. In this part, to overcome the
math constraints regarding the programmable hardware, we use
n equals one4 (Equation 2) and multiplying all elements by ten
(Equation 3). This way, we do not use float point operations to
compute the average queue size in our solution. Furthermore,
we need to multiply by ten our min-max thresholds to compare
correctly.

qAvg = oldQdepth ∗ (1− 2−n) + enq qdepth ∗ (2−n) (1)

qAvg = oldQdepth ∗ (0.5) + enq qdepth ∗ (0.5) (2)

qAvg = oldQdepth ∗ (5) + enq qdepth ∗ (5) (3)

3This metadata was chosen because it has more influence on the QoS of the
DASH service, according to [22].

4Once, 2−1 = 0.5, gives the same weight to the old average and the current
queue occupancy [23].

If the average queue size is below the minThsld, the packet
is forwarded directly to the output port. However, if the value
is between the min-max thresholds (line 8), the packet may
be cloned; in other words, it’s like flipping a coin. In this
case, the clone process will happen if the value saved in the
register (registerProb) is greater than or equal to the randomly
generated number (randomV al) (lines 9-13). The randomV al
is a number between 0 and N , that is, if N is too large, the
probability of dropping a packet will be lower. On the other
hand, if N is small, the probability of dropping packets will
be higher. Finally, if the queue size exceeds maxThsld, all
packets will be cloned (lines 16-18).

The action to drop a packet is performed in the ingress
pipeline, as described in Algorithm 2. Initially, the algorithm
checks if the incoming packet was recirculated from egress (line
2). We use a register with a length equal to the number of ports
so that each port is mapped by an index, where each index
is linked to each output port. If the packet was recirculated,
we turn on the flag to drop, that is, set the value to one in
the index register (line 3). After that, the recirculated packet
role is finished, being discarded (line 4). The remaining part
of Algorithm 2 is essentially to forward packets as usual (line
6), by defining the output port. However, at this moment, the
algorithm checks if the output port has the flag to drop ON or
OFF. If the flag is ON (value 1), the packet should be dropped
(lines 8-9) and the register is reset. Note that only one packet is
dropped at a time and future packets going to the same output
port will be dropped only if a recirculated packet is received
in the ingress pipeline, as an indicator of congestion.

Algorithm 2 ACTION TO DROP - INGRESS

Input: pkt, pktRecirc
1: for each pkt do
2: if pkt == pktRecirc then
3: dropF lag[output port] = 1 ▷ Flag to drop ON
4: dropPktRecirc
5: end if
6: ip forward
7: dropPort = dropF lag[output port]
8: if dropPort == 1 then
9: dropPkt ▷ Packet dropped

10: dropF lag[output port] = 0 ▷ Flag to drop OFF
11: end if
12: end for

IV. EVALUATION

To validate our design and evaluate our hypothesis, we design
two types of experiments. The first one was conceived to verify
the advantages and impact in terms of recirculation for dropping
packets at the ingress using iRED versus dropping at the egress.
The second evaluation analyzes the usage of iRED versus TD
for a DASH CDN, in terms of cached video available in client’s
buffer and the number of frames per second played.

Both experiments were done in a virtual environment built on
a physical server model Dell EMC PowerEdge R720 with 2 In-
tel Xeon processors® E5-2630 v2 2.60GHz, 6 cores per socket
(24 vCPUs), 48GB RAM, 2TB HDD and Ubuntu 18.04.5



LTS. Virtualbox (6.1.28) was used as the hypervisor together
with Vagrant (2.2.19) and Ansible (2.10.8) for infrastructure
provisioning. All the artefacts are available for replication
purposes in a public repository5.

Buffer size ref. value N value minThsld maxThsld
64 4 28 56

128 8 56 112
256 16 112 224
512 32 224 448

1024 64 448 832
TABLE I

VALUES OF N USED IN THE EXPERIMENTS.

For each experiment, we evaluate if the buffer size in the
routers has some influence on the performance results. In this
context, we variate the reference values regarding the buffer size
in terms of the number of packets, from 64 to 1024 packets.
Because of this variation, we had to adjust the value of N 6

(Algorithm 1) for each buffer size according to Table I.

A. Experiment 1
In this first case, we want to verify if dropping packets in

the ingress could give some advantage over dropping packets
compared to the egress pipeline in terms of latency, throughput
and their impact on resources usage. We designed the topology
described in Fig. 5, in which host 1 (h1) sends synthetic
traffic (packets have 1514 bytes of size) to host 2 (h2) through
the router. We use iperf3 (TCP connection) and ping (ICMP
packets) tools to collect performance statistics. Furthermore,
telemetry instructions save the number of dropped packets
across all algorithms, allowing us to calculate bandwidth usage
in AQM egress solutions and recirculation cost in iRED.

h2h1
Router

CoDEL

iRED
PI2

Ingress Dropping Egress Dropping

Fig. 5. Ingress vs egress dropping.

Each independent execution of this experiment lasted 60
seconds, with 5 repetitions for each algorithm. This experiment
lasted approximately 35 minutes, divided into 3 parts, that is,
25 minutes for iRED (5 minutes for each buffer size reference
value), 5 minutes for CoDEL and 5 minutes for PI2 for P4.
We set the buffer size high enough (10.000 packets) for all
approaches to make sure that the only congestion control is
performed by the AQM7. The results shown represent the mean

5https://github.com/leandrocalmeida/.
6The N value is adjusted to bring the minThsld to less than half the buffer

size reference value, satisfying the rule of thumb [8].
7In other words, we have no tail drop discards.

of observations. The parameters used in CoDEL and PI2 are
described, respectively, in Tables II and III.

Parameter Value
Target delay 5 msec

Control interval 100 msec
TABLE II

CODEL PARAMETERS.

Parameter Value
Target delay 20 msec
PI interval 33 msec

α 0.3125Hz
β 3.125Hz

TABLE III
PI2 PARAMETERS.

Fig. 6 shows the average RTT for each AQM algorithm.
iRED performed better than CoDEL and PI2 for smaller buffers
reference values (64 and 128 packets) and statistically the same
for larger buffers reference values. For a buffer size reference
value of 64 packets (best case), iRED outperforms PI2 (worst
case since its target delay is set to 20msec) by up to 2.48x.

iRED 64 iRED 128 iRED 256 iRED 512 iRED 1024 Codel Pi2
AQM algorithms
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Fig. 6. Average RTT.

In Fig. 7, we can see the average RTT from a temporal
perspective, computing a rolling average with a window that
includes the last 10 observations. This result indicates that
smaller buffers reference values tend to have a lower average
RTT. This information, which seems to be obvious, can help
hardware manufacturers set the size of buffers routers for delay-
sensitive applications.

Fig. 8 shows the CDF (Cumulative Distribution Function)
for each algorithm in terms of throughput. In this case, the
algorithms that converge first (PI2 and CoDEL) presented a
lower throughput. On the other hand, iRED converged later,
indicating greater throughput. For a buffer size reference value
of 64 packets (best case), iRED outperforms PI2 (worst case)
by up to 0.74x.

We evaluate the impact of dropping packets at the egress
in terms of bandwidth usage. To do this, we use counters to
save the number of dropped packets and calculate the drop rate,
which gives us an indication of wasted resources.

Table IV shows that both, Codel and PI2, have the same
dropping rate, 0.005%. This value, which may seem small,
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must be observed from the impact on the bandwidth wasted
on state-of-art network equipment. Wasting happens because
dropped packets go through all the switch pipelines, consuming
unnecessary bandwidth. Considering that state-of-the-art net-
work equipment currently can reaches rates of 25.6Tbps (64 x
400Gbps) [24], dropping on egress can consumes 1.31Gbps of
total internal switch bandwidth.

We also evaluate the impact of iRED in terms of resources
usage for recirculation. On programmable switches, a specific
internal port is designated for the recirculation function [25].
Table V shows how much bandwidth of this recirculation port,
considering 400Gbps, is used based on the percentage of the
recirculated packets collected in our experiment.

B. Experiment 2

This experiment is based on the fact that there is a correlation
between the queue depth and the DASH QoS as shown in [22].
That is, when the queue occupancy increases in the buffers,
the number of FPS decreases in the video player, causing QoS
degradation. Moreover, we assume that when the queue is full,
there is one (maybe several) culprit flows.

When randomly dropping packets from the queue, there is
a higher probability of dropping packets from the guilty flow.
With these discards, the TCP congestion control algorithm must
act, relieving the pressure on the buffers and consequently
reducing the queue delay. This reduction should reflect in
fewer rebuffering interrupts, thus improving the DASH QoS.

Egress algorithms Dropping rate (%)
CoDEL-P4 0.005

PI2-P4 0.005
TABLE IV

EGRESS DROPPING RATE.

iRED evaluated Recirculated packets (%) Bandwidth consumed
iRED 64 0.038 152Mbps

iRED 128 0.022 88Mbps
iRED 256 0.016 64Mbps
iRED 512 0.005 20Mbps

iRED 1024 0.005 20Mbps
TABLE V

PERCENTAGE OF RECIRCULATED PACKETS AND BANDWIDTH
CONSUMPTION.

Although not new, this is the hypothesis that we want to verify
in the programmable data planes.

Video Client

Sinusoid Load Sinusoid Load 

ISP Network 

ISP Router

Client Router

CDN Server

CDN Network

Transit Router

Fig. 9. Emulated programmable CDN.

We created a realistic emulated programmable CDN for our
assessments, as shown in Fig. 9. The CDN server is positioned
inside of ISP (Internet Service Provider) network, offering the
videos catalog from a DASH service. The ISP router connects
the CDN server outside of ISP network, through the Transit
Router. Attached to the Transit Router and to the Client Router
there is a sinusoid load generator.

The video client and the load generators consume the video
catalog available from the CDN server. Furthermore, to observe
QoS in the video client, the video service metrics were col-
lected at each millisecond by the video player8. Fluctuations
in the network traffic, generated by the sinusoid load, cause
bottlenecks in the routers’ output interfaces.

Each independent execution of this experiment lasted 600
seconds, with 5 repetitions for each approach. This experiment
lasted approximately 300 minutes, divided into 2 parts, that is,
250 minutes for iRED (50 minutes for each buffer size reference
value) and 50 minutes for Tail Drop. The results represent the
mean of observations.

In Table VI, the components are described. All their connec-
tions are provided by BMv29 switches, which are P4-capable
virtual equipments.

8https://github.com/Dash-Industry-Forum/dash.js.
9https://github.com/p4lang/behavioral-model.



Name OS vCPUs Memory
CDN Server Ubuntu 20.04.1 LTS 1 512MB
Video Client Ubuntu 20.04.1 LTS 4 4GB

Sinusoid Load 1 Ubuntu 20.04.1 LTS 12 16GB
Sinusoid Load 2 Ubuntu 20.04.1 LTS 12 16GB

ISP Router Ubuntu 20.04.1 LTS 4 4GB
Transit Router Ubuntu 20.04.1 LTS 4 4GB
Client Router Ubuntu 20.04.1 LTS 4 4GB

TABLE VI
VMS DETAILS.

The CDN server was responsible for providing a video
catalog in the DASH standard for the client and the load
generators. Two video streams were made available, one being
a transmission of a soccer game for the video client access;
and a playlist containing the ten most accessed videos on
Youtube® for the load generators. The Webserver Apache
version 2 was installed for hosting videos; FFmpeg (2.8.17) was
used for encoding the videos; and MP4box (0.5.2) for creating
the MPEG-DASH manifest files.

The video client, by means of DASH.js video player, con-
sumes the video streaming of the soccer game, using the TCP
New Reno as the congestion control algorithm.

The load generators [26] make service requests to the CDN
server by dynamically adjusting the number of active sessions,
spawning, and terminating video clients. The load generator
produces requests following a Poisson process whose arrival
rate is modulated by a sinusoidal function, described in Equa-
tion 4, where: A represents an amplitude; F the frequency; and
λ is a phase in radians.

f(y) = A sin(F + λ) (4)

The CDN server hosts the video catalog with different quality
levels, as shown in Table VII. The video client can choose from
each of the different quality levels according to the traffic load
on the network. That is, when the load on the network is high,
the client plays the video in low resolution. However, when the
load on the network decreased, the client choses the video at its
highest resolution. This fluctuating behavior in traffic obeyed
the sinusoid load generators.

Type Resolution FPS GOP10 Kbps Buffer Codec
vı́deo 426x240 18 72 280 140 h264
vı́deo 854x480 24 96 980 490 h264
vı́deo 1280x720 30 120 2080 1040 h264
áudio - - - 128 - AAC
áudio - - - 64 - AAC

TABLE VII
VIDEO PARAMETERS USED IN A CDN SERVER.

The parameters used by the load generators were: A = 10;
F = 2; λ = 25. With these parameters, the load fluctuation
with the number of video clients over time generated by
the sinusoidal load varied between 15 (minimum) and 35
(maximum) over time.

Since in experiment 1 we evaluated the AQM strategies be-
tween them (iRED, Codel, and PI2), in this second experiment

10Group of Pictures.
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Fig. 10. Occupancy of the video player buffer in seconds.

we decided to evaluate iRED as an AQM strategy versus the
Tail Drop (TD) approach. Here we want to assess whether using
an AQM strategy based on packet drop policy improves the
QoS of a DASH video service. TD is the default mode of the
routers, without any AQM policy applied to congestion control.
Based on this context, we evaluate the cached video available in
client’s buffer (in seconds), for each buffer size reference value
on the routers. Video clients use this cache to not interrupt the
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Fig. 11. Frames per second CDF.

video playback in bottleneck conditions.

In Fig. 10, the abscissa axis represents the cached video in the
client’s buffer in seconds, and the ordinate axis represents the
duration of experiment in microseconds. In this case, a bigger
cache (frames to be played) is enhancing the QoS [7]. In all
subfigures of Fig. 10 we can to observe that iRED algorithm
(blue lines) maximizes the level of occupancy of cache buffer
as video is played. This cache is an important component for
streaming video in congested conditions [7], as the video player
uses locally stored frames while congestion control is helped
by the probabilistic packet drop of iRED. For a buffer size of
256 packets (best case), iRED outperforms TD (worst case)
by up to 0.85x. However, as in TD (orange lines) the discard
is always by the tail, TCP global synchronization happens,
equitably punishing all flows that cross the network. In these
situations, the video player will have little time (video frames)
for transmission in the cache buffer under bottleneck conditions,
decreasing the QoS.

Another way to evaluate the video quality is to look at
the number of FPS displayed on the video client screen [7].
In our configuration, the DASH server offered three levels of
quality for the same video stream so that the client could choose
according to the load on the network. In this case, the video

client could play the video in 18, 24, or 30 FPS, self-adjusting
according to the feedback provided by the infrastructure status.

Fig. 11 shows the CDF for iRED (blue lines) and TD (orange
lines) in terms of frames per second played on the video clients.
In this case, the approach that converges first played the video
at a lowest resolution (low fps). In a broader perspective, for all
analyzed buffer sizes, iRED showed signs of maximizing the
FPS presented in the video client, that is, good evidence that
packet dropping for a video service improve the DASH QoS.
On the other hand, in the TD approach, the video client played
the video in a minor resolution most of the time of transmission.
For a buffer size of 256 packets (best case), iRED outperforms
TD (worst case) by up to 0.91x.

Overall, the experiments showed evidence that DASH on
a TD approach network can lower QoS for a video clients.
Although DASH is considered smart and adjusts resolutions
on demand, the video player is unable to maximize the local
buffer occupancy. However, iRED proved to be useful in bot-
tleneck conditions, aiding TCP’s congestion control mechanism
through the probabilistic drops.

V. CONCLUSIONS

Assessing the QoS of video streaming is a way for the
provider to know if the service is being delivered at a level



of quality expected by consumers or not. In this context, we
designed and implemented iRED, an AQM inspired by the
well-know RED, to run in programmable data planes. The
evaluation of iRED shows that dropping packets at the ingress
minimizes the latency and resources consumed and maximizes
the throughput when compared with state-of-the-art works.

We also created a realistic emulated programmable CDN,
in which a DASH service was evaluated on a network with
programmable nodes in the data plane. The results indicate that
iRED improves the local buffer level of the video player and
the number of frames per second played. These findings show
that, under certain circumstances, QoS is positively impacted
by packet dropping.

Next steps include the evaluation of iRED having a mix
of different application flows in the network so that we can
observe the impact of dropping packets in different types of
traffic. Furthermore, adjust iRED to identify the culprit flow to
dropping packets only of this flow.
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