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Abstract:
Techniques for obtaining multiple clustering solutions are essential to knowledge ex-

traction in many fields, as they may offer different interpretations of the data. Some
of the challenges in discovering multiple clustering solutions refers to obtaining solutions
which contain highly differing and high quality clusters, flexibility of approaches regarding
different cluster’s definitions and the need for benchmark data and a quality assessment
methodology. In this paper, we tackle these challenges by (i) providing a methodology
for evaluating a set of multiple clustering solutions with respect to domain knowledge
available, considering the clusters themselves as solutions instead of the usual partitions;
(ii) providing a benchmark for the proposed assessment methodology; (iii) investigating
the suitability of techniques based on traditional clustering algorithms for the discovery
of high quality clusters considering flexibility regarding different cluster’s definitions; and
(iv) proposing a simple mechanism for extracting relevant clusters given a collection of
partitions. Moreover, besides being used for clustering evaluation, we point out that
the clusters themselves could be viewed as the multiple clustering solutions, with great
benefits in several aspects of cluster analysis.

keywords: Cluster analysis, Multiple clustering solutions, Cluster evaluation, Alterna-
tive clustering

1 Introduction

A great number of applications of cluster analysis can be found today in both academic
and commercial areas. Solutions range from the application of traditional clustering
algorithms to advanced approaches, which encompasses ensembles and a variety of tech-
niques for obtaining multiple alternative clusterings (Müller et al, 2012). In the scientific
research, the main goal of cluster analysis is the extraction of new knowledge from ex-
perimental data, giving important insights to advances in knowledge on the field. In
commerce/business area, the use of such techniques for data mining may also collaborate
significantly to the development of enterprises. In summary, the potential application of
clustering techniques is quite broad.

Either on science or business, clustering poses challenges to the data analysts. Cluster-
ing techniques are means to explore and verify structures present in the data, by grouping
the objects according to some sort of similarity (Jain and Dubes, 1988; Handl et al, 2005;
Xu and Wunsch, 2005). The idea is to reveal hidden intrinsic structures with great po-
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tential of practical utility for the domain experts.
The majority of the existing clustering approaches aims to find one partition describing

the intrinsic structure of a data set. These are the cases, for example, of many traditional
algorithms like k-means as well as of many other advanced approaches, such as the
clustering ensembles (Strehl and Ghosh, 2002; Monti et al, 2003; Fern and Brodley, 2004;
Topchy et al, 2005; Kuncheva et al, 2006; Vega-Pons and Ruiz-Shulcloper, 2011), many
evolutionary algorithms for clustering as those described in (Hruschka et al, 2009), and
the multiobjective algorithm of Law (Law et al, 2004). Other traditional algorithms
find a hierarchy of nested partitions, such as the single-link and complete-link algorithms
(Xu and Wunsch, 2005; Jain, 2010). There are also algorithms that search for overlapping
clusters, which relax the condition of mutual disjunction in a clustering to obtain soft or
fuzzy partitions (Hruschka et al, 2009; Parvin and Minaei-Bidgoli, 2015).

Regardless of the type of structure a clustering algorithm looks for, cluster analysis in-
volves some well-known difficulties derived from the lack of a precise and unique definition
of what a cluster is and the nature of data that can present a heterogeneous structure
and/or can hide more than one possible structure (Estivill-Castro, 2002; Faceli et al,
2008). These difficulties motivated the development of new techniques that aimed the
discovery of a number of alternative heterogeneous structures given a data set. Such avail-
ability of alternative structures is important for the domain experts, which are applying
cluster analysis for knowledge extraction, as they may offer different interpretations of
the data (Handl and Knowles, 2004; Faceli et al, 2008; Müller et al, 2012). As far as
we know, most of the approaches dealing with multiple alternative structures considers
partition as the structure of interest.

Müller et al. discuss the challenges related to discover multiple clustering solutions
(Müller et al, 2012). Among these challenges, we can mention (i) “to provide a processing
scheme, which computes multiple clustering solutions that contain high quality clusters
and are highly differing to each other” (Müller et al, 2012); (ii) the need of general and
flexible approaches allowing the discovery of flexible novel solutions regarding the cluster
definition; and (iii) the need for benchmark data and a quality assessment methodology
for evaluating multiple clustering solutions. They also highlight the lack of more general
techniques tackling several challenges at once.

The traditional clustering algorithms in general consider an homogeneous clustering
criterion over the entire feature space and, thus, all clusters recovered will be of the same
type (similar in shape or density, for example) (Law et al, 2004; Jiamthapthaksin et al,
2009). On the other hand, these algorithms are very effective in finding the type of clusters
they are designed for (Handl and Knowles, 2007). This is evidenced by the large amount
of applications that successfully employ such algorithms. In this way, different clustering
algorithms, based on different clustering criteria, can be used to build a collection of
partitions and provide multiple diverse alternative solutions.

A collection of partitions obtained like this is highly prone to present irrelevant and
redundant solutions. There are several more recent clustering approaches that rely
on traditional algorithms. They produce a collection of solutions using traditional al-
gorithms and then work on these solutions to build up a more general, concise, and
robust result. Many of these techniques are based on the simultaneous optimization
of several clustering criteria. MOCK (Multi-Objective Clustering with automatic K-
determination) (Handl and Knowles, 2007), MOCLE (Multi-Objective Clustering En-
semble) (Faceli et al, 2009), and IMOCLE (Liu et al, 2012) are examples of such tech-
niques. This type of approach considers partitions produced with traditional algorithms
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as starting points and an optimization phase to select and explore new solutions. Other
techniques like ASA (Automatic Selection Algorithm), aim to select a relevant and di-
verse subset of solutions, given an initial collection of partitions (Sakata et al, 2010).
Traditional algorithms can be used to build this initial collection of partitions.

Redundancy in a collection of partitions can be seen as the presence of a number of
solutions that are very similar or even identical. Techniques for finding multiple clus-
tering alternatives always present some mechanism to avoid such redundant solutions.
However, we argue that there is another type of redundancy hidden inside partitions.
This means that a highly diverse set of partitions can present a great amount of identical
clusters. Moreover, we also argue that by relying on the quality of a partition, one can
underestimate the quality of the clusters inside it. This is particularly relevant in the
multiple solutions context, in which each partition can contain part of the meaningful
clusters.

Finally, a partition can be seen as evident and possibly relevant when it is obtained
by different algorithms at the same time. Such characteristic was successfully used in
ASA for the partitions’ selection (Faceli et al, 2010; Sakata et al, 2010). ASA considers
the partitions obtained simultaneously by algorithms based on distinct clustering criteria
as the most evident ones, and guarantees they are present in the solution set.

Considering all these context, we tackle the mentioned challenges on the discovery
of multiple clustering solutions by (i) providing a methodology for evaluating a set of
multiple clustering solutions with respect to the domain knowledge available, by consid-
ering the clusters themselves as solutions instead of the usual partitions; (ii) investigating
the suitability of techniques based on traditional clustering algorithms to discover high
quality clusters considering flexibility of cluster’s definitions; (iii) proposing a simple
mechanism for extracting relevant clusters given a collection of partitions and (iv) pro-
viding a benchmark for the proposed assessment methodology. Moreover, besides being
used for clustering evaluation, we claim the clusters could be regarded as the multiple
clustering solutions themselves. Specifically, the contributions can be detailed as follows:

• We assess the employment of traditional clustering algorithms as a simple strategy
for finding multiple alternative partitions by employing several traditional algo-
rithms based on different clustering criteria to build a collection of partitions. Then,
we evaluate the quality and diversity of all solutions in this collection, to verify if
algorithms that find homogeneous partitions can be used together to provide the
mentioned flexibility regarding cluster’s definitions.

• We compare a multiobjective clustering and a selection strategies concerning their
ability to recover high quality multiple solutions while avoiding redundant and
irrelevant solutions.

• We analyze partitions sets in a new fashion, which encompasses exploring the con-
tents of partitions. More specifically, we analyze the alternative partitions collec-
tions by breaking them into their clusters components and then producing col-
lections of clusters. We investigate redundancy and quality issues as well as the
amount of irrelevant information produced. With this, we prove our arguments
that a great amount of redundancy can exist even in a diverse set of partitions
and that the quality of a whole set of clusters in a given collection of partitions is
underestimated when the evaluation is done solely considering the rigid structures
that are the partitions.
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• We investigate the usefulness of a cluster evidence in the selection of relevant and
high quality clusters. The evidence of a cluster is given by the number of times
a cluster appears inside different partitions of a collection. We show that this
approach can be as, or more effective than, some advanced clustering techniques,
if we take into account the quality of clusters recovered, the number of irrelevant
clusters selected, and the simplicity of the approach (low computational cost).

• By comparing the analysis based on partitions and clusters and using the evidence of
a cluster to select high quality alternatives, we illustrate the benefits of considering
clusters as multiple alternative solutions instead of multiple partitions.

• We organize all data and results, making them available as a benchmark for the type
of analysis we propose, namely the Clusters Evaluation Benchmark1. The available
information encompasses pre-processed data sets, known structures, collections of
partitions, collections of clusters, worksheets with the quality of solutions (partitions
and clusters), according to the evaluation indices employed.

As our aim is on the way of analyzing and not comparing the techniques themselves,
we choose a representative of each technique we have been working with. To achieve
all the mentioned goals, this paper is structured as follows. In Section 2, we introduce
related studies that had motivated and/or that will be used in our analysis along with
the notation we used in our study. A detailed description of the performed experiments
is presented in Section 3. Section 4 contains all the analysis performed and a discussion
on their implications. Finally, in Section 5, we present a summary of our conclusions.

2 Background and related studies

Many recent and advanced clustering approaches rely on traditional algorithms and/or
aim to find multiple alternative solutions. In this section, we briefly describe the ap-
proaches used in this paper and/or those that motivated the ideas presented here. We
also introduce the terminology and notation we used along the paper:

• X = {x1,x2, ...,xn} is a data set with n objects.

• ck ⊂ X and ck 6= ∅ is a cluster of X.

• C = {(ci, ni)|ci ∈ Cu, ni ∈ Z+} is a multiset of clusters, where Cu is the underlying
set of C, with nc clusters, and ni is the multiplicity of the cluster ci.

• A partition of X in K clusters is a set of clusters π = {c1, c2, ..., cK}, such that⋃K
j=1 cj = X and cj ∩ cl = ∅, j, l = 1, ..., K and j 6= l.

• Π = {(πi, ni)|πi ∈ Πu, ni ∈ Z+} is a multiset of partitions, where Πu is the under-
lying set of Π, and ni is the multiplicity of the partition πi.

• The cardinality of a set or a multiset A is denoted by |A|.
1Clusters Evaluation Benchmark, accessed in 12/10/2015 and available at

http://lasid.sor.ufscar.br/clustersEvaluationBenchmark/
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Henceforth, we will use the term collection to denote both sets and multisets.
As previously mentioned, traditional clustering algorithms search for homogeneous

partitions. In such type of partition, all clusters are in accordance to the same definition.
Thus, one traditional algorithm alone can not contribute with the challenge of produc-
ing novel solutions which are flexible regarding cluster definitions. Nevertheless, many
advanced approaches have been using these algorithms attempting to produce more gen-
eral results such as heterogeneous partitions (each cluster is in accordance to a different
cluster definition) or partitions sets where heterogeneity are distributed among partitions
(each partition can be in accordance to a different criterion). In this paper, we will em-
ploy the traditional algorithms Average-link (AL), Centroid-link (CeL), Complete-link
(CoL), k-means (KM), Single-link (SL), and Shared Nearest Neighbors (SNN) as a basis
for producing the mentioned flexibility.

The first techniques that use traditional algorithms to provide diversity of criteria
were the heterogeneous ensembles. In such ensembles, a collection of base partitions Π is
produced by running different clustering algorithms. This strategy can be applied alone
or combined with other strategies. Then, a function is applied to Π to combine partitions
into a single consensus partition. There is a great variety of consensus functions re-
sulting in different ensembles (Vega-Pons and Ruiz-Shulcloper, 2011; Topchy et al, 2005;
Kuncheva et al, 2006; Iam-On and Boongoen, 2015). Some examples of heterogeneous
ensembles can be seen at (Strehl and Ghosh, 2002; Ayad and Kamel, 2003; Monti et al,
2003; Hu and Yoo, 2004; Fred and Jain, 2006; Gionis et al, 2007; Domeniconi and Al-Razgan,
2009; Chung and Dai, 2014). Albeit such ensembles employ different clustering criteria
in the construction of base partitions, all these criteria are considered simultaneously in
the construction of the consensus partition. In this way, high quality clusters with regard
to one criterion can be diluted by weak clusters when combined. This may lead to an
overall poor quality of the consensus partition, although good clusters may be present in
base partitions (Law et al, 2004; Piantoni et al, 2015). Moreover, traditional ensembles
are not intended to the obtaining of multiple alternative clusterings.

The multiobjective approach of Law (MOL) (Law et al, 2004) is one of the first works
on ensembles addressing the problem of finding a heterogeneous partition based in the
ability of the traditional clustering algorithms and applying different clustering criteria
for different regions of data space. MOL produces a collection of candidate clusters C by
running different clustering algorithms. Each algorithm produces a partition πa of X in
Ka clusters, and C = ∪aπ

a. Then, it applies hill climbing to find the set of target clusters
that will compose the final partition. The optimized objective function is composed of
a goodness function based on cluster stability (NMI- Normalized Mutual Information)
and penalties for dealing with overlapping clusters and objects that remain unassigned.
Essentially, this algorithm finds a partition with each cluster that may be according to a
different cluster definition, despite failing when the best candidate clusters significantly
overlap. As MOL enforces that the result to be one single partition, it is not appropriate
for finding multiple alternative clusterings. In the meantime, several ideas employed in
MOL have a great potential to be applied in the multiple alternative clusterings scenario.

There is a number of approaches that address the issue of considering multiple clus-
tering criteria and also result in a set of alternative clusterings. Many of these techniques
rely on the simultaneous optimization of several clustering criteria. In this paper, we are
interested on approaches based on the combined use of traditional single-objective clus-
tering algorithms and MultiObjective Evolutionary Algorithms (MOEAs) to find multiple
solutions, as our aim is to investigate the suitability of traditional algorithms as a basis
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for such task.
The MOEAs are based on the concept of Pareto optimality and, in the context of

clustering, will produce a set of partitions ΠS, which represents an approximation of
the Pareto optimal set (for short, referred to as Pareto set from now on). The objec-
tive functions to be optimized should represent validation indexes able to measure the
quality of partitions in different ways, each one being related to a different clustering cri-
terion. For example, the algorithms MOCK (Multi-Objective Clustering with automatic
K-determination) (Handl and Knowles, 2007) and MOCLE (Multi-Objective Clustering
Ensemble) (Faceli et al, 2009) employ a Pareto-based multiobjective genetic algorithm
to simultaneously optimize several clustering criteria. Other similar approaches can be
seen in (Saha and Bandyopadhyay, 2010; Kraus et al, 2011; Coelho et al, 2011; Liu et al,
2012; Wahid et al, 2014). We employ MOCLE in this paper, which has shown to be able
to find a diverse set of partition, while keeping this set somehow concise (Faceli et al,
2009).

More than an algorithm, MOCLE is a framework used to build multiobjective cluster-
ing ensembles (Faceli et al, 2009). It employs several of the same basic ideas of MOCK
together with ideas of clustering ensembles. Its general idea is to build a collection of
base partitions ΠI by considering different clustering criteria and to optimize this set of
solutions with multiple criteria to produce a set of consensus partitions ΠC . Any set of
algorithms can be used to produce ΠI , but for better performance, algorithms based on
different criteria are recommended. For the optimization, a Pareto-based multiobjective
genetic algorithm should be employed with the following components: (i) ΠI as initial
population; (ii) an ensemble algorithm as crossover operator; (iii) two or more comple-
mentary validation indices as objective functions. No mutation is used. For the crossover,
we could use any existing cluster ensemble method suitable for partitions pairs. Several
alternatives were investigated for different components.

With ideas similar to MOL, MOC (MultiObjective Clustering) is a framework for
multiobjective clustering that aims to recover interesting clusters regarding two or more
objectives (criteria) (Jiamthapthaksin et al, 2009). Like the MOEAs mentioned, MOC
is based on the concept of Pareto optimality. However, it differs from most multiob-
jective approaches as “it seeks for good individual clusters maximizing multiple objec-
tives that are integrated into a single clustering by a user-driven post-processing step”
(Jiamthapthaksin et al, 2009). Briefly, MOC produces a repository of potentially inter-
esting clusters according to multiple objectives and have a cluster summarization unit
that allows the selection of subsets of these clusters, according to user preferences. The
repository of clusters is build by running clustering algorithms that support plug-in fitness
functions and selecting the best clusters according to the Pareto dominance. This reposi-
tory will contain only clusters which are good with respect to at least two objectives. The
summarization step allows users to query the repository of clusters on different objectives
and thresholds. The result is a “final clustering from the viewpoint of a single or a small
set of objectives that are of particular interest for a user”(Jiamthapthaksin et al, 2009).
For this, they propose an algorithm named MO-Dominance-guided Cluster Reduction
algorithm, which selects the clusters considering objectives and thresholds given by the
user.

An important issue to consider when searching for multiple solutions is that alterna-
tives must be highly different so that each alternative will be able to provide additional
knowledge (Müller et al, 2012, 2015). On the other hand, when a solution can be found
by different means (e.g different algorithms based on different criteria), this is a clear sign
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of evidence and probably of relevance (Faceli et al, 2010; Sakata et al, 2010). The ASA
is an algorithm for the selection of partitions, which considers both evidence of partitions
(given its easy identification by several different criteria), and diversity of collections of
partitions (Faceli et al, 2010).

Given a collection of initial partitions (ΠI), the ASA produces a set of partitions
ΠS, working as follows. First, it initializes ΠS with the most evident partitions, that
is, partitions πi ∈ ΠI having ni > p, where p is a parameter of the algorithm. In
(Faceli et al, 2010), p is the number of algorithms employed to build ΠI . Then, ASA starts
an iterative process of (i) discarding partitions of ΠI which are highly similar to all those
already selected, and (ii) adding new other distinct partitions to ΠS. Similarity is given
by the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985). The level of similarity
considered for discarding a partition is given by a threshold automatically adjusted by
the algorithm. Any clustering strategy could be used to produce ΠI . Nevertheless, to
take advantage of the selection of evident partitions aspect, it is necessary to employ
different algorithms to produce ΠI .

The success obtained by the techniques based on traditional algorithms motivated
us to investigate them as basis for a simple mechanism of producing multiple solutions
according to diverse definitions of clusters. The ideas of MOL and MOC also motivated
us to investigate the quality of clusters inside a collection of partitions produced with
traditional clustering algorithms and other mentioned approaches. In this way, we look
at the results of algorithms as if they were a repository of clusters and then, we analyze the
extension they encompass the true clusters hidden among several underlying structures
of a given data set.

As the multiplicity of a solution in a given collection of partitions has been successfully
used in ASA, we also investigated the potential of the same information in the context
of clusters. For such, we will consider the selection of clusters with a multiplicity higher
than two as an approach for producing a collection of clusters instead of partitions. From
here on, we will refer to such approach as Multiplicity Based Cluster Selection (MBCS).

3 Experiments

In this section, we describe the experimental design employed in our investigation. More
specifically, we detail the data sets, the procedure to build the collections of partitions
and clusters, and finally, the procedure for evaluating the quality of these collections.

3.1 Data sets

In this analysis, we used a total of 37 data sets with differences in size (number of objects
and dimensionality), shape, definitions of cluster, and domain area. Among them, 15 are
artificially produced, representing different properties of interest, and 17 are real data
from several domains like Medicine and Bioinformatics. Moreover, 15 of these artificial
and real data sets present multiple alternative true partitions. These data sets were
obtained from several sources and will be briefly described in the following.

Each of these data sets have a set of npTP different true partitions (or known struc-
tures) ΠTP = {π1, π2, ..., πnpTP }. As we are interested in evaluating the amount of in-
formation discovered using clustering strategies, we considered the recovery of clusters
individually. For this, we break ΠTP into their clusters components thus producing a
multiset of clusters CTP =

⋃
πtp∈ΠTP

πtp.
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Table 1 summarizes the main characteristics of these data sets. In this table, n is
the number of objects, d is dimensionality (number of attributes), npTP is the number
of true partitions, Kπj∈ΠTP is the amount of clusters of each πj ∈ ΠTP , and ncTP is the
number of distinct clusters in CTP . Considering all data sets, we have a total of 62 true
partitions and 251 true clusters.
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Table 1: Data sets characteristics

Type Data set n d npTP Kπj∈ΠTP ncTP

atom 800 3 1 2 2
ds2c2sc13 588 2 3 2, 5, 13 19
ds3c3sc6 905 2 2 3, 6 8
ds4c2sc8 485 2 2 2, 8 10
engyTime 4096 2 1 2 2
gaussian 60 600 1 3 3

Artificial hepta 212 3 1 7 7
lsun 400 2 1 3 3
monkey 4000 2 4 8,5,3,2 14
simulated6 60 600 1 6 6
spiralsquare 2000 2 2 2, 6 8
target 770 2 1 6 6
tetra 400 3 1 4 4
twoDiamonds 800 2 1 2 2
wingNut 1016 2 1 2 2

armstrong 72 1081 2 2,3 4
chowdary 104 182 1 2 2
contractions 98 27 1 2 2
dyrskjot 40 1203 1 3 3
eTongueSugar 375 6 2 2,3 5
glass 214 9 3 2, 5, 6 9
golub 72 3571 4 2, 3, 2, 4 10
gordon 181 1626 1 2 2
iris 150 4 1 3 3
laryngeal1 213 16 1 2 2

Real laryngeal2 692 16 1 2 2
laryngeal3 353 16 2 2,3 4
libras 360 90 2 8,15 21
lung 197 1000 1 4 4
miRNAcancer 218 217 6 3, 20, 4, 9, 2, 2 40
respiratory 85 17 1 2 2
segmentation 2310 19 1 7 7
su 174 1571 1 10 10
voice3 238 10 2 2,3 4
voice9 428 10 2 2,9 10
weaning 302 17 1 2 2
yeoh 248 2526 2 2, 6 7
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Artificial Data Sets

Data sets atom, engyTime, hepta, lsun, target, tetra, twoDiamonds and wingNut

belong to the Fundamental Clustering Problems Suite2 (FCPS), which is an ele-
mentary benchmark for clustering algorithms (Ultsch, 2005). These data sets were
designed to reveal benefits and shortcomings of traditional algorithms, including
their adequacy for finding diverse types of clusters. For this, FCSP presents data
sets with a good diversity of cluster’s definitions. Each algorithm can successfully
identify the structure of some of these data sets, while failing with others.

Data sets gaussian and simulated6 contain high dimensional data simulating gene
expression data. They are available as supplementary material3 of (Monti et al,
2003).

Data sets ds2c2sc13, ds3c3sc6, ds4c2sc8, spiralsquare and monkey were designed
by the authors to explore (i) the diversity of types of clusters in heterogeneous struc-
tures and (ii) the availability of multiple solutions. For such, each of them contain
at least two structures representing different refinement levels of the same informa-
tion. Moreover, at least one of the structures of each data set is heterogeneous.
Data sets ds2c2sc13, ds3c3sc6, ds4c2sc8 and spiralsquare were previously de-
scribed in (Faceli et al, 2010). The spiralsquare data set was constructed from
two data sets described in (Handl and Knowles, 2004). Data set monkey is used
in this paper for the first time. Figure 1 illustrates the data set monkey with its
known structures. These data sets are available at the website of the Laboratory
of Intelligent and Distributed Systems of the Department of Computing, UFSCar,
as part of the Clusters Evaluation Benchmark.

The remainder data sets contain real data. In these, different structures correspond to
different known classifications of data. Thus, we assume the known classifications follow
some of the used clustering criteria. However, a classification could be unrelated to a
clustering criterion. This would lead to a low performance for all clustering techniques.

Real Data Sets

Data sets contractions, laryngeal1, laryngeal2, laryngeal3, respiratory, voice3,
voice9 and weaning regard to data from medical domain and were made available
by the Pattern Recognition group of School of Computer Science, Bangor Uni-
versity4. Details on specific publications concerning these data sets are available
together with the data.

Data sets glass, iris, libras and segmentation were obtained from the UCI Machine
Learning Repository5 (Newman et al, 1998).

2Fundamental Clustering Problems Suite, accessed in 04/14/2015 and available at
http://www.uni-marburg.de/fb12/datenbionik/data?language_sync=1

3Supplementary material of (Monti et al, 2003), accessed in 04/14/2015 and available at
http://www.broadinstitute.org/cgi-bin/cancer/publications/view/87

4Real medical data sets, accessed in 04/14/2015 and available at
http://pages.bangor.ac.uk/~mas00a/activities/real_data.htm

5UCI Machine Learning Repository, accessed in 04/14/2015 and available at
http://archive.ics.uci.edu/ml/
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Figure 1: True structures of monkey data set

Data sets armstrong, chowdary, dyrskjot, golub, gordon, lung, miRNAcancer, su and
yeoh are from bioinformatics domain and were originally described in (Golub et al,
1999; Bhattacharjee et al, 2001; Armstrong et al, 2002; Su et al, 2001; Yeoh et al,
2002; Gordon et al, 2002; Dyrskjøt et al, 2003; Lu et al, 2005; Chowdary et al, 2006).
Here, we used the same version of the data sets we employed in (Faceli et al, 2010).

Data set eTongueSugar was built as a combination of the data sets of the E-Tongue
Sugar Collections v.16, described in (Sakata et al, 2012). The eTongueSugar data
set refers to sugar quality assessment. The attributes refers to measurements au-
tomatically collected using an electronic tongue sensor. The original data sets
contained the same type of data, but with different types of sample preparation.
For one data set, the pH of the samples was controlled and for the other it wasn’t.
In the eTongueSugar data set, we mixed samples with and without pH control.
In this way, the data set eTongueSugar contains two alternative structures, one
distinguishing the samples with and without pH control, and another concerning
sugar type: Organic, VHP (Very High Polarization) or VVHP (Very Very High
Polarization). This version of the data set is available only as part of the Clusters
Evaluation Benchmark.

3.2 Partitions and Clusters Obtaining

For the analysis we made, we have produced three sets of partitions: ΠBAlg, produced
with Basic Algorithms; ΠMOCLE, produced with MOCLE; and ΠASA, produced with
ASA.

6E-Tongue Sugar Collections v.1, accessed in 12/10/2015 and available at
http://www.dcomp.sor.ufscar.br/talmeida/etonguesugar/index.html
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The more diverse algorithms are employed, the higher the chances of producing a
more diverse set of partitions and clusters. To explore diverse numbers of clusters is
fundamental. For data sets hiding several alternative structures, it is natural for these
alternatives to present different numbers of clusters. Moreover, even considering data
sets with one single true structure, it is known that the best clustering obtained with an
algorithm does not always contain the same number of clusters of the true structure. By
considering this, to produce ΠBAlg, we run conceptually different clustering algorithms
with several parameters settings. The algorithms employed were AL, CeL, CoL, KM, SL,
and SNN. Generally speaking, AL, CeL, CoL, and KM look for compact clusters while
SL and SNN produce connected clusters. AL, CeL, CoL, KM, and SL are traditional and
largely employed clustering algorithms (Jain and Dubes, 1988). SNN is a more recent
technique that robustly deal with high dimensionality, noise, and outliers (Ertöz et al,
2002).

To allow flexibility and increase the amount of information that can be extracted, we
have varied the parameters for each algorithm to produce partitions with the number of
clusters K ∈ [Kmin, Kmax], where Kmin = 2 and Kmax = 2 max

πj∈ΠTP

Kπj
.

For hierarchical algorithms (AL, CeL, CoL, and SL), we generated and cut the hierar-
chies to produce one partition for each value of K. For KM, to minimize the occurrence
of suboptimal solutions, we ran the algorithm 30 times for each K with a random choice
of initial centroids. Among all 30 partitions produced for a given K, we selected the
partition with the lowest squared error for ΠBAlg. For SNN, we ran the algorithm with
several values for its parameters and then selected the partitions having K in the interval
of interest to compose ΠBAlg. The parameters values was the same as the ones used in
(Faceli et al, 2007), that is NN being of 2%, 5%, 10%, 20%, 30% and 40% of n, topic
and merge of 0, 0.2, 0.4, 0.6, 0.8 and 1, the default value for the parameter strong, and
the value 0 for the parameters noise and label.

We employed the software Cluster 3.07(Hoon et al, 2004) to run the algorithms AL,
CeL, CoL, KM, and SL. To run SNN, we used the implementation of its authors, sent to
us upon our request.

To produce ΠMOCLE, we ran the version of MOCLE8 implemented with NSGA-II
and with MCLA as the crossover operator. We also used the CON and DEV validation
indices as the objective functions and the set of partitions ΠBAlg as the initial population.
The current version of MOCLE allows the variation of two parameters: G, which is the
number of generations the genetic algorithm will run and L, a percentage on the data
set size, based in which the number of nearest neighbors necessary for calculating the
connectivity will be determined. After a few empirical tests with different values for
parameters L and G, we decided to employ the values 2.5% and 100, respectively.

Finally, for producing ΠASA, we ran the algorithm ASA9 by feeding it with ΠBAlg.
For the parameter p, we used value 2.

To evaluate the obtaining of clusters, we broke the sets of partitions and produced
the corresponding sets of clusters, as we did with the true sets of partitions. That is,
for each ΠS (ΠBAlg, ΠMOCLE or ΠASA) we produced their corresponding set of clusters

7Cluster 3.0, accessed in 12/10/2015 and available at
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

8MOCLE, accessed in 12/10/2015 and available at
http://lasid.sor.ufscar.br/mocleproject/

9ASA, accessed in 12/10/2015 and available at
http://lasid.sor.ufscar.br/asaproject/
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CS =
⋃

πs∈Πs
πs.

Moreover, to analyze the selection of clusters as an alternative to some advanced
clustering techniques, we produced a set of clusters (CMBCS), by applying the MBCS
(Multiplicity Based Cluster Selection) directly in the collection of clusters CBAlg. In this
way, the CMBCS contains all the distinct clusters in CBAlg that presented a multiplicity
equal or greater than 2 (ni ≥ 2).

3.3 Methodology for Evaluating the Quality of Results

To evaluate the quality of partitions sets, we used the Adjusted Rand index (ARI),
which measures the similarity between two partitions, πi and πj (Jain and Dubes, 1988;
Hubert and Arabie, 1985; Milligan and Cooper, 1986). The ARI(πi, πj) is given by Equa-
tion 1, where (1) nij = |ci∩cj|, ci ∈ πi and cj ∈ πj; (2) ni· indicates the number of objects
in the cluster ci; (3) n·j indicates the number of objects in the cluster cj; (4) n is the total
number of objects; and (5)

(
a
b

)
is the binomial coefficient a!

b!(a−b)!
. This index results in

values from -1 to 1, with the value 1 indicating a perfect agreement between the partitions
and values near 0 or negatives corresponding to cluster agreement found by chance.

ARI(πi, πj) =

|πi|∑
i=1

|πj |∑
j=1

(
nij

2

)
−

(
n
2

)−1
|πi|∑
i=1

(
ni·
2

) |πj |∑
j=1

(
n·j
2

)

1
2
[
|πi|∑
i=1

(
ni·
2

)
+

|πj |∑
j=1

(
n·j
2

)
]−

(
n
2

)−1
|πi|∑
i=1

(
ni·
2

) |πj |∑
j=1

(
n·j
2

) (1)

Considering each data set X, the corresponding sets of true partitions, ΠTP , and a
collection of partitions ΠS produced by ΠBAlg, ΠMOCLE or ΠASA, we calculate the ARI
between each pair of partitions πtp and πs, where πtp ∈ ΠTP and πs ∈ ΠS. Then, for each
πtp ∈ ΠTP , we selected the partition πs with the largest ARI.

Similarly, for evaluating the quality of the individual clusters, we considered the set
of true clusters CTP and a collection of clusters CS produced by CBAlg, CMOCLE or
CASA. In order to evaluate the similarity between two clusters ci and cj, we employed the
proportion of the objects present in both clusters, given by Equation 2. For each pair of
clusters ctp and cs, where ctp ∈ CTP and cs ∈ CS, we calculate the Intersection Degree of
two clusters, InD(ctp, cs). Then, for each ctp ∈ CTP , we selected the cluster cs with the
largest InD.

InD(ci, cj) =
|ci ∩ cj|
|ci ∪ cj|

(2)

4 Analysis and Discussion

Figure 2 illustrates the total number of partitions produced with each technique for all
data sets, comparing to the number of true structures (line in the graphic). The graphic
shows the great amount of information produced with the techniques in comparison to
the amount of relevant information hidden in data (true partitions). This gives rise to
three main questions: (i) How much of the information obtained represent redundant
information?; (ii) All the relevant information are indeed recovered?; (iii) How much of
the information obtained really represents relevant information?
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Figure 2: Number of partitions produced by each technique. For data sets ds2c2sc13,
libras and miRNAcancer, |ΠBAlg| > 100.

Because of their nature, the solutions of MOCLE and ASA are not redundant. That is,
partitions they produce/select are different from each other. On the other hand, different
algorithms (or one algorithm with different settings of parameters) can produce identical
or very similar partitions. Thus, ΠBAlg can present redundant partitions. Figure 3
illustrates the number of partitions in ΠBAlg in comparison to the number of distinct
partitions (Πu

BAlg). As can be observed, the redundancy in ΠBAlg exists, but it is not too
high.

If we turn our attention to the clusters inside partitions, we can see that the number
of distinct clusters present in partitions is indeed much smaller than the total number
of clusters they present. This means the information present inside partitions can be
redundant even for true partitions, in cases in which more than one underlying structure
exists. To illustrate this issue, we quantify the redundancy of clusters by what we call
redundancy degree of a collection of clusters. Given a collection of clusters CS (CBAlg,
CMOCLE or CASA), redundancy degree is given by 1− |Cu

S|/|CS|. The smaller the value,
the smaller the number of replicated clusters. Figure 4 presents the redundancy degree
of each collection of clusters, including true clusters CTP , represented by a line in the
graphic.

Observing Figure 4, we can see that, for almost all cases, all techniques present some
degree of redundancy. Even in the collection of true clusters, there are cases of redun-
dancy. For example, this can be due to partitions containing clusters that represent
subdivisions of clusters from other partitions. In the case of BAlg, all but two data sets
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Figure 3: Number of partitions (|ΠBAlg|) and of distinct partitions (|Πu
BAlg|) produced by

traditional algorithms.

presented a redundancy degree of at least 0.4, which means that more than 40% of the
clusters are repeated. Even in the cases of MOCLE and ASA, where partitions are not
redundant, the clusters are. In more than 50% of data sets, more than 50% (redundancy
degree of 0.5) of the clusters obtained with MOCLE and more than 30% (redundancy
degree of 0.3) of the clusters obtained with ASA are redundant. In some cases, the re-
dundancy achieves almost 90% of the clusters. In average, around 62% of the clusters
in BAlg, 49% of the clusters obtained with MOCLE, 33% of the clusters obtained with
ASA and 5% of the clusters in the true partitions are redundant.

Turning the attention to the quality of solutions, we presented the percentage of
true partitions (Figure 5) and true clusters (Figure 7) recovered with each strategy.
In Figure 5, we present the percentage of fully recovered partitions (ARI = 1) and a
percentage of recovery including partitions retrieved only partially (ARI > 0.7), and, in
Figure 7, we present the percentage of fully recovered clusters (InD = 1) and a percentage
of recovery including clusters retrieved only partially (InD > 0.7).

Observing Figure 5, we can see that no more than 16% of true partitions was fully
recovered by all techniques. If we consider an approximated recovery, no more than 40%
of partitions was retrieved. The higher level of recovery was achieved by the traditional
algorithms (BAlg). We expected ASA would loose information as it only works by select-
ing partitions among those in the initial collection. However, we did not expect the lost
of information to occur in the case of MOCLE. Oppositely, we expected the amount of
information recovered would increase over the initial collection, as MOCLE can produce
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Figure 4: Redundancy degree for each collection of clusters.

new partitions. The loss in MOCLE’s case ended up being higher than for ASA, either
considering full or approximate partitions.

Figure 6 represents one detail of Figure 5. It depicts the percentage of fully or ap-
proximately recovered partitions (ARI > 0.7) detailed for each data set. In this figure,
it is evident that the recovery of true structures are concentrated in artificial data sets.
None of the partitions was integrally recovered (ARI = 1) with real data sets (data not
shown). And, considering an approximate recovery, in only four out of 22 real data sets,
the strategies recovered some of the partitions.

Although all techniques produced a high number of partitions, as observed in Figure 2,
most of them are of no interest. That is, they do not represent true partitions hidden in
the data, as observed in Figures 5 and 6.

With this analysis, we show that the recovery of whole partitions is hardly achieved,
mainly for real data. However, we wanted to check if we could see a better picture if
we looked at the clusters hidden in the partitions. For this, we analyzed the collections
of clusters produced from collections of partitions provided by each technique (BAlg,
MOCLE and ASA). At the same time, we analyze the potential of applying MBCS by
comparing CMBCS to the other collections of clusters.

In Figure 7, it is possible to observe that approximately 30% of the clusters was re-
trieved integrally (InD = 1) by all techniques. The worst recovery was achieved with
MOCLE, while the best was achieved with BAlg. MBCS (which means the simple selec-
tion of clusters that appeared twice in CBAlg) provided the retrieval of the same clusters
as those recovered by ASA. Considering a partial recovery (InD > 0.7), 50% to 60% of
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the true clusters were recovered. Again, the best recovery was achieved with BAlg (61%
of the true clusters) and the worst was achieved with MOCLE.

Figure 8 represents the detailing of Figure 7, considering the approximate recovery
detailed for each data set. As for the scenario of partitions, the recovery of true clusters
was better for artificial data sets. All techniques recovered 100% of the clusters for 9 out
of 15 artificial data sets. In the other six cases, at least 60% of the clusters was recovered
by all techniques (except in two MBCS cases). Nevertheless, for the real data sets, a
very different picture can be seen. For eight out of the 22 real data sets, all techniques
recovered at least 50% of true clusters (again with 2 exceptions in MBCS) and for 18 out
of 22 real data sets, the strategies recovered some of the clusters (contrasting with four
cases in the scenario of partitions).

This represent a much better picture than the one that we saw in the partitions
scenario, showing the partitions analysis indeed underestimate the amount of useful in-
formation hidden inside the partitions. Moreover, it indicates that the simple selection
of the clusters identified repeatedly by traditional algorithms (MBCS) may lead to the
identification of relevant information.

Finally, to compare the amount of irrelevant information produced by these tech-
niques, Figure 9 presents the ratio between the total number of distinct clusters (by
summing up all data sets) obtained with each technique and the total number of distinct
true clusters. It is possible to see that the BAlg obtained about 18 times more distinct
clusters than the exiting true clusters. By selecting the clusters of BAlg with multiplicity
of at least two (MBCS), we only get 8 times more clusters than the true ones, which was
the smallest amount of irrelevant clusters obtained.

In summary, none of the strategies was able to recover all clusters, specially in real
scenarios.

BAlg and MOCLE were the only strategies which in fact produces solutions. MOCLE
starts with partitions produced in BAlg and is supposed to select the good ones as well
as to produce new better partitions. However, with rare exceptions, MOCLE was not
able to find more information than that present in the initial sets (BAlg) or even selected
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Figure 6: Percentage of true partitions recovered for each data set.

with ASA or MBCS (either in the context of partitions or clusters). In this way, BAlg
showed to be the most useful to produce relevant information.

This, together with the employment of data sets with clusters known to be based on
different definitions of cluster, show that the combined use of different types of traditional
clustering algorithms can be used as a simple strategy for finding flexible multiple solu-
tions regarding clusters definitions. This is much more evident when we look at clusters
as the solutions instead of partitions.

As alternatives to select solutions, ASA and MBCS were not able to maintain all the
information present in the initial collection of partitions. On the other hand, at the cost
of a small loss of relevant information, a significant reduction in irrelevant information
produced was achieved together with a reduction in the computational cost required to
produce the results. While ASA’s complexity is O(C2n2), MBCS’s is O(C2n). MOCLE
is far more complex as its computational cost depends on a large number of different
tasks that need to be performed and include many other factors as the dimensionality of
the data set and the multi-objective genetic algorithm variables.
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Figure 8: Percentage of true clusters recovered for each data set
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5 Conclusion

In this paper, we provided a methodology for evaluating a set of multiple clustering
solutions by considering the clusters themselves as solutions instead of partitions. For
such, we rely on three types of techniques for obtaining multiple partitions based on
traditional clustering algorithms (multiple complimentary traditional algorithms, multi-
objective clustering ensembles, and partition’s selection approaches). Then, we proceeded
a comparison of the two ways of analyzing multiple solutions: the traditional one by
comparing partitions and the analysis of clusters obtained regardless of the partitions
they originally belonged. By doing so, we showed that (i) even a diverse set of partitions
can have a great amount of redundant information in their clusters, and more importantly,
that (ii) the quality of the information extracted is quite underestimated when evaluating
them by the partitions analysis.

By focusing on obtaining multiple clusters, we illustrated how different types of tra-
ditional clustering algorithms can be used jointly to produce high quality clusters based
on different definitions at a cost of generating a great amount of redundant and irrele-
vant clusters. Multiobjective clustering and strategies of selection relying on partitions
diminish the amount of redundant and irrelevant solutions obtained while add an extra
high computational cost for processing the initial solutions. Moreover, they lost part of
the information obtained by traditional algorithms.

Finally, we showed that the evidence of a cluster can be used as a simple and effective
strategy for selecting the most relevant clusters. In fact, we are considering that redun-
dant clusters may indeed represent relevant clusters. In summary, the strategy consists
of (i) obtaining a collection of partitions by different types of traditional clustering al-
gorithms, (ii) breaking the obtained partitions into their clusters components and (iii)
selecting the redundant clusters as the multiple solutions. We showed that such strat-
egy was able to produce more concise sets of relevant clusters than other more complex
approaches relying on partitions.
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