Using Probabilistic Data Structures for Monitoring
of Multi-tenant P4-based Networks

Regis F. T. Martins, Fabio L. Verdi
Computing Department
Federal University of Sao Carlos
Sorocaba-SP, Brazil
regisftm @gmail.com,fverdi @gmail.com

Abstract—With the evolution of the processing capacity of
the network devices and the appearing of novel programmable
network hardware, new methods and techniques for traffic
monitoring have been proposed. Among these new techniques,
the use of sketches has been increased. Sketches are probabilistic
data structures capable of summarizing information about the
network with two main advantages over flow-based counters:
low memory usage and adjustable accuracy. Considering this
scenario, this paper proposes the use of probabilistic data struc-
tures implemented in P4 (Programming Protocol-Independent
Packet Processors) to monitor multi-tenant networks. While it
is common to see similar solutions for monitoring non-shared
networks, as far as we know this is the first work that deals mullti-
tenant scenarios. We implemented sketches for each tenant so that
an isolated network monitoring can be done. The solution, named
BitMatrix, was created taking into account two probabilistic
structures: bitmaps and counter-arrays.

Index Terms—probabilistic structures, counter-array, bitmaps,
P4, monitoring.

I. INTRODUCTION

The exponential growth of network traffic emphasizes the
importance of network monitoring, management, planning and
traffic engineering. It is important for data centers to have
accurate and fine-grained monitoring to operate efficiently,
considering the use of shared resources by multiple tenants.

In this context, sketches are probabilistic data structures
used to store summarized information about the network.
There are several applications in measurement tasks for
sketches, such as heavy-hitter detection, traffic pattern change
detection, traffic matrix estimation, flow-size distribution esti-
mation, and others [1].

As an evolution of Software Defined Networking (SDN),
P4 (Programming Protocol-Independent Packet Processor) was
presented as a high-level programming language for packet
forwarding devices [2]. In order to use a program written in
P4, it has to be compiled to the target device, which can be
a hardware or software based system. P4 allows the creation
of several mechanisms for traffic measurement [3] [4], among
them, the probabilistic data structures, or sketches.

The main goal of this paper is to propose and implement
a solution based on the P4 language for multi-tenant network
monitoring, based on the well-known bitmap and counter-array
sketches. A new compact and probabilistic structure, named

Rodolfo Villaga, Luis Fernando U. Garcia
Department of Industrial Technology
Federal University of Espirito Santo
Vitéria-ES, Brazil
rodolfo.villaca@ufes.br,luferu@gmail.com

BitMatrix, is presented. BitMatrix was created to support the
multi-tenant monitoring.

The rest of this paper is organized as follows: Section II
shortly discusses important concepts about well-known proba-
bilistic compact structures. Section III presents BitMatrix and
how it is used for multi-tenant network monitoring. Section
IV shows the usage of our solution for collecting network
information taking into account a shared multi-tenant scenario.
Section V concludes the paper and some future work are
proposed.

II. BACKGROUND

It is well known that network monitoring is a widely studied
topic in the literature, presenting several solutions. Sketches
[5] allow to reduce the computational cost associated with
the detailed collecting of information in the network [6] and
can get traffic statistics requiring a fixed size memory with
controlled accuracy. In this paper the measurement strategy
is based on a probabilistic approach for packet counting as
defined by Zhao [6]. In particular, we use a probabilistic
structure called BitMatrix, which is based on bitmaps and
counter-arrays.

The bitmap data structure is simple: an array of bits ini-
tialized with zeros on each monitoring node. For each packet
arrival at a participating node, the node simply sets the bit to 1,
indexed by the hash value of the header’s invariant fields plus
some bytes of the payload of this packet [6]. That is, the value
resulted from the hash operation will be used to select which
position of the bitmap will be set as 1 and will represent each
packet in a unique way. Even by using different values from
packet fields and payload for hash calculation, it is possible
that two hashes with different parameters results in the same
value. This is called hash collision and creates a gap between
the amount of packets actually forwarded by the element and
the total number of positions marked in the bitmap. There
are three main factors that can cause variation in the number
of hash collision in the proposed scenario: a) the size of the
bitmap or, in other words, the number of positions available
in the array; b) the occupation of the bitmap when marking a
new position; ¢) the type of the hash funtion used to generate
the hash value.



Bitmaps can be used to estimate the volume of traffic
between two observing network devices in any period of time
during the monitoring activity. To do this, it is required to
retrieve the set of bitmaps marked during this interval and
then compare the two sets of bitmaps. The more common bits
in the same positions the more common packets have passed
through these elements. If the intersection of bits in a same
position is small, it is possible to conclude that few common
packets have passed by these elements.

The size of the bitmap and the size of hash value are related,
in a sense that there is no point in setting a bitmap with more
positions than the maximiun hash value. Positions beyond the
maximum hash value will never be used. Nevertheless, setting
a bitmap smaller than the maximum hash value will demand
a modulo operation using the bitmap size and the resulted
hash value in order to determine the offset for the present
packet. We also need to consider the bitmap occupancy as the
more occupied is a bitmap, bigger are the chances of a hash
collision.

In addition to the bitmap probabilistic structure, counter-
arrays can be used to count the number of bytes of each
arrival in a network device. This sketch is basically an array
of counters and is operation and counting is very similar
to bitmap, but it counts, not only marks a position in the
array. In the next section, we present the use of our proposed
data structure, called BitMatrix, and how it is associated with
bitmaps and counter-arrays in order to estimate the amount of
packets and bytes that passes through a node, per tenant and,
in addition, understand the path taken for those packets inside
the P4 network.

III. P4 BITMATRIX DESIGN AND IMPLEMENTATION

The main idea is to implement a bitmap using available
commands and structures in the P4 language. To do that, the
bitmap is implemented as a P4 register. Its length is the re-
gister’s parameter instance_count and the register’s parameter
width is set to 1, as it will receive only values O and 1.
The other possibility, regarding the usage of bitmap in P4,
is that it is possible to create multiple arrays using only one
register with a larger width. This will result in what we called
BitMatrix. The BitMatrix is the usage of a unique P4 register
to host several bit arrays, each one used to measure traffic
from a different tenant identified by its Source IP subnetwork.

The goal is to use BitMatrix associated with counter-arrays
to estimate the amount of packets and bytes transmitted for
each tenant and, in addiction, understand the path taken by
those packets inside the P4 network. Each packet received by
the P4 switch computes a hash value. This value is used to
determine which position will be set in the BitMatrix. In this
paper we used BitMatrix to count packets according to its
origin (tenant). In this way, it is possible to determine which
tenant is responsible for each packet in the network.

Figure 1 illustrates BitMatrix structure and how each bitmap
is accommodated into it. In this paper, as a proof of concept,
a BitMatrix composed by three bitmaps is presented. This
resulted in a P4 register with a width equal to 3. Thus, it is

possible to segment traffic from up to three different tenants,
setting different bitmaps inside the BitMatrix according to
which tenant originated the packet. Using a P4 table, a value
for each tenant can be assigned, according to its Source IP
subnetwork: 1 to tenant A, 2 to tenant B and 4 to tenant C.
Once the hash value of each packet is computed, a modulo
operation is applied to the value to determine what position
should be set in the BitMatrix. This is achieved by using the
P4 primitive action modify_field with_hash_based_offset [7].
As each position has three bits, we used another P4 primitive
action named bit_or to set the correct bit in that position of
BitMatrix by performing a logical OR operation using the
current value for the selected position and the tenant value.

= N o~
3 5 B Posigao
(0] ofo] o
0| - [o]o] 1

2" posicdes 0 0 2
(o] ... [o]o] n-
0] olo] n
BitMatrix

Figure 1. BitMatrix structure and its bitmaps.

To count bytes it was not possible to use the same P4
structure for all tenants, so we created one P4 register to work
as a counter-array for each tenant. Finding the position for
where to sum the current packet bytes is achieved by using
the same hash value computed for BitMatrix. In this way, when
retrieving packets, it is possible to know how many bytes were
carried by that packet.

IV. EVALUATION

Towards to determine what is the more efficient setup for the
bitmap size and maximum occupancy, tests were done using
a fixed hash value size and varying the bit array size and
the percentage of occupancy. The hash algorithm used was
the checksum 16 (csuml16), which generates a value of 16
bits length. The bit array sizes tested were 2048, 4096, 8192,
16384, 32768 and 65536 bits length. We did not control the
occupation itself, instead, we processed an amount of packets
approximately 5%, 10%, 25%, 50% and 100% of the bit array
size. The output was the occupation smaller than the amount
of packets processed due the hash collision inherent in the
process.

To continue the BitMatrix evaluation the percentage of
hash collision was target to keep under 10%, which implied
a bitmap occupation around 15%. The hash collision was
calculated by dividing the total number of positions marked
in the bit array by the number of processed packets. This
approach resulted in an epoch of 60s, a bandwidth limited
to 1Mbps and bitmap size of 16384 positions. The setup for
this experiment was constructed using Mininet [8] network
emulator customized in order to enable P4 switch in the
emulated network.



The topology used was composed of three hosts and four P4
switches. Each of the hosts received an IP address from a dif-
ferent subnetwork, emulating different tenants. The topology
is presented in Fig. 2.

P4
sw2

n st owd n3

Tenant A Tenant C

P4
sw3

n2

Tenant B
Figure 2. Mininet emulated network topology with P4-enabled forwarding.

The paths between tenants were arbitrarily defined as shown
in Table L.

Table T
TRAFFIC PATH BETWEEN TENANTS

Tenant Pairs | Sw hop by hop Tenant Pairs | Sw hop by hop
AtoB swl - sw3 Cto A sw4 - sw2 - swl
Bto A sw3 - swl Bto C sw3 - swé
AtoC swl - sw2 - sw4 CtoB sw4 - sw3

Every packet processed by the P4 switches generates entries
in its corresponding probabilistic data structures (instantiated
in each switch). Our P4 implementation consists in processing
packets for the BitMatrix and can be described in the following
general steps:

o Completely parse the packet headers of Layer 2, 3, 4 and

the first 8 bytes of the payload;

o Select the packet headers to be used in the hashing
algorithm;

o Determine the position in the bitmap;

o Determine the position (using the same hashing value)
in the counter-array to sum the total bytes of the current
packet with the previous ones;

o Forward the packet to the next hop.

A. PFarsing the Packet Header

The P4 [2] implementation used in this work enabled the P4
switch to completely parse the packet headers from layer 2 to
layer 4 and also the first 8 bytes (64 bits) of the payload. We
implemented the parser for TCP, UDP and ICMP protocols.
As the TCP layer usually brings optional headers, we used
a variable length header to accommodate it. Ignoring TCP
optional header would mislead the parsing of the payload. The
parsing of payload was done by creating an one field header to
receive the 8 bytes (64 bits) subsequent to the Layer 4 header.

B. Hashing and Hash Inputs

Although using the same hashing algorithms, the input for
them must not vary and need also to be sufficient to identify

a packet as unique across all hops in a network. Duffield and
Gross-glauser [9] define that the IPv4 fields with low entropy
are those which do not vary along the forwarding path for a
given packet. Then, to have a low entropy, in this work we used
the invariant IPv4 header fields (version, header length, total
length, identification, flags, fragment offset, protocol, source
address and destination address) and the first 8 bytes of the
payload as input for the hash algorithm. According to Snoeren
[10], those inputs are sufficient to differentiate unique packets.

C. Retrieving and Processing BitMatrix

To understand what was the path of a certain packet, it
is necessary to compare the data structures gathered from
different devices in the network. The data structures to be
compared need to belong to the same epoch (monitoring
interval). An epoch is the time frame in which the P4 switch
stored information in the data structure. From time to time, the
data structures need to be collected and reset. This determines
the beginning of a new epoch.

The P4 switch is not in charge of collecting and storing
the data structures. This task was performed by a centralized
server, who collected the values from the P4 registers and reset
them to start a new epoch. For this experiment, the time frame
for each epoch was set to 60 seconds.

By processing data from bitmaps and counter-arrays, it is
possible not only to obtain information regarding the amount
of packets and bytes processed by each element per tenant, but
also to identify how may packets and bytes per tenant went
through a specific path in the network.

D. Counting Results

, The amount of packets, during a specific period, per tenant
can be visualized in Figure 3. This metric was a result of the
sum of all set positions in the bit array corresponding to each
tenant in the BitMatrix in each epoch.

30K Packets per Minute Transmitted by Tenant in P4 Switch 1

~
o
=

Packets per Minute

o
=

o]
06:15 06:20 06:25 06:30 06:35 06:40

M Tenant A - BitMatrix Packet Counting [l Tenant B - BitMatrix Packet Counting
M Tenant C - BitMatrix Packet Counting

06:45

Figure 3. Amount of packets per tenant in P4 switch 1.

By counting the positions with bits set to 1 from all bitmaps
of the BitMatrix, we obtain the approximated total number of
packets processed by each P4 switch. This value reflects less
packets than each P4 switch actually processed due to the hash
collisions.

The amount of bytes sent by tenants was computed by
counting the total values of each position from every tenant-
correspondent counter-array. The total number of bytes related



to packets forwarded by a particular P4 switch is computed
by counting the values from each position in every tenant’s
counter-array. As counter-arrays indeed count the number of
bytes, there is no hash collision and this result will reflect
exactly the volume of bytes processed by the P4 switches.

By computing bitmaps from different network devices, it
is possible to determine what was the path a packet took
through the network. In Fig. 4, it is possible to see the
amount of packets per minute originated by tenant A with
destination to tenant B and packets originated from tenant B
with destination to tenant A. Those metrics were calculated
using logical operations with the bitmaps for tenants A and B
from every P4 switch in charge of forwarding packets between
those two tenants. Considering the information in Table I, it
is possible to state that packets going from tenant A to tenant
B will take the path passing through P4 switch 1 and then
switch 3, and packets going from tenant B to tenant A will
take the reverse route, passing firstly through P4 switch 3 and
finally through P4 switch 1. With this information in hands,
it is possible to determine which packets flowed from tenant
A to tenant B. To do that, we used the logical expression
((swl_A & sw3_A) & !sw4_A) where swl_A is the bitmap
corresponding to tenant A from P4 switch 1, sw3_A is the
bitmap corresponding to tenant A from P4 switch 3, sw4_A
is the bitmap corresponding to tenant A from P4 switch 4.
Similar logic was used to determine which packets sent from
tenant B went through P4 switch 3 and P4 switch 1, towards
tenant A. This logic indicates what position was set by packets
exchanged between tenants A and B.

Packets per Traffic Flow Direction

Packets per Minute
5
=

0
06:15 06:20 06:25 06:30 06:35 06:40 06:45
[ Traffic from Tenant Ato B ((swl & sw3) & !swd4) [l Traffic from Tenant B to A ((sw3 & swl) & !sw2)

Figure 4. Amount of packets on path AB+BA.

Once these positions are known, we were able to count how
many bytes were involved in the data transfer between tenants
A and B.

V. CONCLUSION

In this paper we presented BitMatrix, a matrix of bitmaps
used to measure traffic information in a multi-tenant net-
work. BitMatrix information is complemented with the use of
counter-arrays to register the amount of bytes carried by each
packet in the network. The data structures were implemented
using P4 language in the native P4 software switch BMv2 [11]
in a network emulated with Mininet. Using an external server,
acting as a collector. It was possible to retrieve information
from BitMatrix of each P4 switch and store it to be processed
producing relevant information according to the network ad-
ministrator needs.

The amount of possibilities in terms of processing and min-
ing the collected information is immense. Once the BitMatrix
and counter-array data is obtained, it is just a matter of making
logic operations, counting and crossing the bit streams to
generate a huge amount of network information for each tenant
and as a whole. Future work includes performance adjusts on
the BitMatrix P4 implementation and the inclusion of new
sketches to gather more information about the network in a
compact way with adjustable accuracy.

ACKNOWLEDGMENT

Grant 2015/19766-9, Sao Paulo Research Foundation
(FAPESP) and NECOS - Novel Enablers for Cloud Slicing
- Project 777067 H2020 EU-Brazil Joint Call EUB-01-2017.

REFERENCES

[1] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI'13.
Lombard, IL: USENIX Association, 2013, pp. 29-42. [Online].
Available: http://dl.acm.org/citation.cfm?id=2482626.2482631

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87-95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[3] C.Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker, “In-
band Network Telemetry via Programmable Dataplanes,” in Proceedings
of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, ser. SOSR ’15. Santa Clara, CA, USA: ACM, june 2015,
Demo.

[4] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’17.
Santa Clara, CA, USA: ACM, 2017, pp. 164—176. [Online]. Available:
http://doi.acm.org/10.1145/3050220.3063772

[5]1 P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for
data base applications,” J. Comput. Syst. Sci., vol. 31, no. 2, pp. 182—
209, Sep. 1985. [Online]. Available: http://dx.doi.org/10.1016/0022-
0000(85)90041-8

[6] Q. G. Zhao, A. Kumar, J. Wang, and J. J. Xu, “Data streaming
algorithms for accurate and efficient measurement of traffic and flow
matrices,” in Proceedings of the 2005 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’05. Banff, Alberta, Canada: ACM, 2005, pp. 350-361.
[Online]. Available: http://doi.acm.org/10.1145/1064212.1064258

[7] “The P4 Language Specification - version 1.0.4,” The P4 Language
Consortium, https://p4.org, Specification, may 2017.

[8] Minitet project. [Online]. Available: http://mininet.org.

[9] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct

traffic observation,” IEEE/ACM Trans. Netw., vol. 9, no. 3, pp. 280-292,

Jun. 2001. [Online]. Available: http://dx.doi.org/10.1109/90.929851

A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,

S. T. Kent, and W. T. Strayer, “Hash-based ip traceback,” SIGCOMM

Comput. Commun. Rev., vol. 31, no. 4, pp. 3-14, Aug. 2001. [Online].

Available: http://doi.acm.org/10.1145/964723.383060

The P4 Language Consortium. P4 Switch Behavioral Model. [Online].

Available: https: //github.com/p4lang/behavioral-model.

[10]

(11]



